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Abstract

In this paper we develop a new approach for finding optimal government policies

in economies with heterogeneous agents. Using the calculus of variations, we present

three classes of equilibrium conditions from government’s and individual agent’s op-

timization problems: 1) the first order conditions: the government’s Lagrange-Euler

equation and the individual agent’s Euler equation; 2) the stationarity condition on

the distribution function; and, 3) the aggregate market clearing conditions. These

conditions form a system of functional equations which we solve numerically. The

solution takes into account simultaneously the effect of the government policy on

individual allocations, the resulting optimal distribution of agents in the steady state

and, therefore, equilibrium prices. We illustrate the methodology on a Ramsey prob-

lem with heterogeneous agents, finding the optimal limiting tax on total income.

JEL Keywords: Optimal macroeconomic policy, optimal taxation, computational

techniques, heterogeneous agents, distribution of wealth and income

∗Contact: CERGE-EI, Politickych veznu 7, 111 21 Prague 1, Czech Republic. Email:
radim.bohacek@cerge-ei.cz, michal.kejak@cerge-ei.cz. First version: September 2002. For helpful com-
ments we thank the editor and the referees, Jim Costain, Mark Gertler, Max Gillman, Christian Hellwig,
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1 Introduction

This paper provides a new approach for computing equilibria in which the stationary dis-

tribution of agents is a part of an optimal nonlinear, second-best government problem in

a general equilibrium, Bewley type economy with heterogeneous agents. We formulate

the optimal government policy problem as a calculus of variations problem where the gov-

ernment maximizes an objective functional subject to a system of operator constraints:

1) the first order condition for the individual agent’s problem; 2) the stationarity condi-

tion on the distribution function; and, 3) the aggregate market clearing conditions. The

first order necessary conditions of the government functional problem given by an Euler-

Lagrange equation (with transversality conditions) form a system of functional equations

in individual agents’ and government’s policies and in the distribution function over agents’

individual state variables. We solve this system numerically by the projection method.

Our main contribution is the derived Euler-Lagrange equation for the government prob-

lem and the operator formulation of the individual agent’s Euler equation and of the en-

dogenous stationary distribution. In this way, we are able to solve simultaneously for the

government optimal policy, for the optimal individual allocations, and for the (from a gov-

ernment’s point of view) optimal distribution of agents in the steady state. The first and

second order conditions, in the form of the Euler-Lagrange equation and a modified Legen-

dre condition, respectively, represent the necessary and sufficient conditions for concavity

and a unique maximum attained by the government policy function. There are two restric-

tions we impose on the solution: the government cannot use taxes that are state-contingent

(to preserve incomplete markets and heterogeneity in the economy) and, because of the

variational approach, the tax function must belong to the class of continuously differen-

tiable functions. We do not impose additional assumptions on the shape of the government

policy function. The optimal policy is derived from the first order and envelope conditions

and from the stationarity of the endogenous distribution in the steady state. To our knowl-

edge, this paper is the first one that provides a solution method for this kind of optimal

government problem in an economy with heterogeneous agents.

We formulate the government problem as a modified Golden Rule. That is, we solve for

an optimal limiting government policy under an assumption that the economy converges

to a steady state. The optimal limiting government policy is a long-run optimal outcome

that takes into account intertemporal discounting and the convergence to the steady state.

In a related paper, Davila, Hong, Krusell, and Rios-Rull (2012) consider a social planner

that attains a constrained optimum by directly manipulating the savings decision of each

agent. They derive a functional first-order necessary condition with an added pecuniary

externality arising from general equilibrium effects and use the variational approach for
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its characterization. Compared with Davila et al. (2012), the contribution of our paper is

in the formulation of the Euler-Lagrange equations and the joint consideration of general

equilibrium and distributional effects of the optimal limiting tax policy function.

We illustrate this methodology on a Ramsey problem, solving for the optimal limiting

tax schedule on total income that maximizes average welfare in a steady state of a standard

neoclassical, dynamic general equilibrium model with heterogeneous agents and incomplete

markets calibrated as in Davila et al. (2012). For this calibration with a realistic wage

and wealth inequality, we compare steady state allocations corresponding to the optimal

limiting tax schedule with those related to a progressive tax schedule approximated by

Heathcote et al. (2016) and to a flat-tax reform.

The optimal limiting average tax schedule is a U-shaped function. The marginal tax

rates are also U-shaped, balancing a trade-off between the general equilibrium and the

distributional effect. The former effect arises from providing incentives to accumulate a

higher stock of aggregate capital that increases productivity of labor and, therefore, the

income of poor agents (the average price effect in Davila et al. (2012)). The latter effect

redistributes resources across agents in the stationary equilibrium. The marginal tax rates

at low incomes induce agents to save more in order to escape relative poverty and secure

better insurance against idiosyncratic risk, while the high tax rates on wealthy agents

provide resources for short-run redistribution.

Without agent-specific lump-sum transfers the optimal limiting tax schedule cannot

attain the constrained optimum in Davila et al. (2012). The optimal limiting tax function

only slightly increases the aggregate capital stock but significantly reduces inequality. We

compute transitions to the optimal limiting tax steady state and find that only when a

high initial capital stock can be consumed during a transition, the tax reform improves

welfare of the majority of the population. Following Farhi and Werning (2007), Farhi et al.

(2012), and Krueger and Ludwig (2018), we analyze the effects of the optimal limiting tax

schedule when the government puts different weights on current redistribution compared

to long-term equilibrium effects. Finally, we perform several sensitivity tests and discuss

important differences and effects from an alternative parameterization based on Aiyagari

(1994). The U-shape of the optimal limiting average tax schedule is obtained in most of

the simulated economies.

Our work contributes to recent advances in the literature on dynamic optimal taxation.

Throughout the paper we compare our methodology and results to Davila et al. (2012)

and show the equivalence of our Euler-Lagrange equation to the first-order condition of

their constrained efficiency problem. Several papers have also built on this seminar work:

Park (2017) adds an important dimension by introducing human capital. The first-order

condition with respect to human capital investment also has an extra term whose sign
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is opposite to that of savings. Because the planner can improve welfare only by altering

equilibrium prices, qualitative results of Davila et al. (2012) do not change. However,

endogenous human capital decreases inequality relative to the economy with exogenous

labor. Park (2014) derives positive capital income taxes from the pecuniary externality of

the aggregate capital stock in a limited commitment economy. Evans (2017) studies the

role of capital taxation in a model with uninsurable investment risk. The optimal capital

tax rate balances the pecuniary effect of increased savings with redistribution to agents

whose investment failed. Krueger and Ludwig (2018) analyze capital taxes in a Ramsey

economy where the pecuniary externality cancels out the precautionary savings effect.

Influential studies in the literature analyze the steady state implications of a flat-tax

or a capital income tax reform (Lucas (1990), Ventura (1999), and Conesa et al. (2009)),

or restrict the tax schedule to a specific functional form: Heathcote et al. (2016) and

Conesa and Krueger (2006) compute gains from the optimal progressivity of the income

tax code. Heathcote et al. (2017) allow the degree of tax progressivity to vary with age.

Bakis et al. (2015) apply the same parametric form to compute the optimal tax policy

for a dynastic economy. Useful insights have been obtained by imposing restrictions on

information available to the government in Golosov et al. (2003), Golosov et al. (2011),

Kapicka (2013), or Heathcote and Tsujiyama (2017). Our paper shows that narrowing the

analysis to monotone functions may be rather restrictive and that the shape of the opti-

mal tax schedule is sensitive to parameterization and the resulting stationary distribution

(see Mirrlees (1971), Saez (2001), Mankiw et al. (2009), or Diamond and Saez (2011)).

Compared with the Mirrleesian literature, it is the tax schedule that attains a steady state

where the endogenous distribution is optimal with respect to average welfare.

Finally, our paper adds to the new literature on quantitative methods. In a partial equi-

librium framework, Golosov, Tsyvinski, and Werquin (2014) also use variational approach

to compute Gateaux differentials of local tax perturbations and look for a globally optimal

tax function that cannot be locally improved within a restricted class of tax functions.

For many realistic parameters the optimal marginal tax rates are also U-shaped. Pertur-

bation methods have been recently used to analyze the optimal government responses to

aggregate shocks. Bhandari et al. (2017a) study public debt in an economy where taxes

and transfers are chosen optimally subject to heterogeneous agents’ borrowing constraints

and the distribution of debt ownership. In Bhandari et al. (2017b), the Ramsey planner

optimally sets nominal interest rates, transfers and proportional labor taxes in response to

aggregate shocks in a New Keynesian model where agents are heterogeneous with respect

to co-movements of aggregate variables and measures of inequality.

In our example, we apply our methodology to an optimal limiting tax schedule on total

income from labor and capital. There are several reasons why we choose this setup. First,
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the tax on total income preserves incomplete markets with a non-degenerate distribution

of agents in a steady state. If the government had an access to a lump-sum, first best

taxation, the model would collapse to a representative agent one. Second, to a large extent

the current U.S. tax code does not distinguish between the sources of taxable income. The

last reason for a simple tax on total income is the complexity of the optimization problem.

We discuss how our methodology can be extended to address important issues with respect

to endogenous labor supply, taxation of capital income, borrowing constraints, government

debt, or more detailed life-cycle features.

The paper is organized as follows. The following section defines the stationary Ramsey

problem in a competitive equilibrium. Section 3 formulates the limiting Ramsey problem in

the calculus of variations. The necessary and sufficient conditions in terms of a generalized

Euler-Lagrange equations and Legendre condition are developed in Section 4. Sections

5 and 6 present an example with the optimal limiting income tax schedule. Section 7

concludes. Appendices contain proofs, additional results, and a sensitivity analysis.

2 The Economy

The economy is populated by a continuum of infinitely lived agents on a unit interval.

Each agent has preferences over consumption ct in period t ≥ 0, given by a utility function

E
∞∑
t=0

βtU(ct), 0 < β < 1, (1)

where U : R+ → R is a twice continuously differentiable, strictly increasing and strictly

concave function. We assume that the utility function satisfies the Inada conditions.

At all t ≥ 0, each agent is identified by an endogenous state variable, the accumulated

stock of capital, kt ∈ B = [k, k], and by a discrete, exogenous labor productivity shock

zt ∈ Z = {z, . . . , z}. We assume that there is a borrowing constraint that prevents the

individual savings from being negative. The lower bound could be motivated by solvency

constraints or by an explicit borrowing constraint. As is standard, the upper bound k is

set very high and verified not to be binding in equilibrium. The shock represents labor

efficiency units and follows a first-order Markov chain with a transition function Q(z, z′) =

Prob(zt+1 = z′|zt = z). We assume that Q is monotone, satisfies the Feller property and

the mixing condition defined in Stokey, Lucas, and Prescott (1989). The labor productivity

shock is independent across agents and we preserve the heterogeneity in the economy by

assuming incomplete markets: Agents do not have access to state-contingent contracts but

can only accumulate the risk-free capital stock.

In each period, agents inelastically supply labor and accumulated capital stock to a

5



representative firm with a production function F (Kt, Lt), where Kt ∈ B is the aggregate

capital stock, Lt ∈ R+ is the aggregate effective labor. The production function is con-

cave, twice continuously differentiable, increasing in both arguments, and displays constant

returns to scale. Profit maximization implies the following factor prices

rt = FK(Kt, Lt)− δ and wt = FL(Kt, Lt), (2)

where δ ∈ (0, 1) is the depreciation rate of capital.

Finally, there is a government that finances its expenditures by taxation. In order

to preserve incomplete markets and, therefore, heterogeneity in the economy, we impose

that the government cannot use state-contingent taxes. We assume that the government

cannot issue debt and is fully committed to a sequence of tax functions {πt}∞t=0 to finance its

expenditures equal to a fraction g of total output net of depreciation, not returned back to

the agents.1 The tax schedule is applied to a broadly defined taxable activity of each agent,

xt ∈ R+. We assume xt = x(zt, kt) where x : Z × B → R+ and xz, xk > 0. In each period,

the policy schedule is a twice continuously differentiable function πt : R+ → R, so that an

agent with a total income from labor and capital, yt ∈ R+, yt = y(kt, zt) = rtkt + wtzt,

and a taxable activity xt = x(kt, zt) pays taxes πt(xt) and is left with an after-tax income

yt − πt(xt).2 An individual budget constraint in each period is then

ct + kt+1 ≤ rtkt + wtzt − πt(xt) + kt.

The economy’s aggregate state is characterized by the sequences of government policies

{πt}∞t=0 and the distribution of agents over capital and productivity shock in each period,

{λt}∞t=0. The latter is in each period a probability measure defined on subsets of the state

space, describing the heterogeneity of agents over their individual state (z, k) ∈ Z×B. Let

(B,B) and (Z,Z) be measurable spaces, where B denotes the Borel sets that are subsets

of B and Z is the set of all subsets of Z. Agents have rational expectations and take

prices as given by equation (2). In order to determine prices, agents also have to know the

evolution of the distribution function from an initial distribution λ0, for each sequence of

government policies {πt}∞t=0.

The objective of the government is to choose a sequence of {πt}∞t=0 to maximize

∞∑
t=0

βt
∑
z

∫
u(ct(z, k))λt(z, k)dk, (3)

1Specifying government expenditures net of depreciation simplifies the derivation of analytical prop-
erties that can be related to agents’ incomes. In numerical simulations we use the usual formulation of
expenditures as a fraction of total output. Our methodology equally applies to the case when government
finances any level of expenditures {Gt}∞t=0 and the corresponding revenue-neutral reforms.

2In Section 5, we compute an economy with a tax on total income, i.e. when x = y.
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subject to agents’ optimal allocations in each period, equilibrium prices determined by the

aggregate capital stock and labor,

Kt =
∑
z

∫
kλt(z, k)dk, and Lt =

∫ ∑
z

zλt(z, k)dk, (4)

the government budget constraint,

g (F (Kt, Lt)− δK) =
∑
z

∫
πt(xt(z, k))λt(z, k) dk; (5)

and a law of motion of the distribution,

λt+1(z′, B′) =
∑
z

∫
{(z,k)∈Z×B:ht(z,k)∈B′}

Q(z, z′)λt(z, k) dk, (6)

given an initial distribution λ0.

The government problem assigns equal weights to all agents. This utilitarian approach

is chosen for two main reasons. We prefer to start the economy from an initial distribution

λ0 where all agents have identical wealth and labor productivity. Second, assigning equal

weights to all agents allows us to treat identical agents identically and derive properties for

the long-run equilibrium associated with the optimal limiting government policy function.3

Definition 1 (Stationary Ramsey Problem) A solution to the Stationary Ramsey

Problem is a time-invariant limiting government tax policy function π : R+ → R such

that π = limt→∞ πt maximizes the government problem in (3)-(6).

Note that our analysis is not a pure steady state utility maximization. The optimal lim-

iting government policy is a long run optimal outcome that takes into account intertemporal

discounting and the convergence to the steady state. In other words, we study a steady

state under a modified Golden Rule. That is, we study a steady state of an economy for

which the optimal limiting government policy implies a convergence to that steady state.

2.1 Recursive Formulation

The limiting optimal policy π needs to take into account its effects on equilibrium prices

and agents’ decisions.4 Define the value function of each agent as v : Z × B → R and the

savings function as h : Z × B → B. Given π and equilibrium prices r(K) and w(K), an

3See Davila et al. (2012) for a similar discussion. The initial distribution is arbitrary.
4With exogenous labor supply, the aggregate labor converges deterministically to a constant due to the

law of large numbers. In the following exposition, we normalize the aggregate labor supply and write the
equilibrium prices as functions of the aggregate capital K only.
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agent (z, k) solves the following dynamic programming problem

v(z, k) = max
c,h

{
u(c(z, k)) + β

∑
z′

v(z′, h(z, k))Q(z, z′)
}
, (7)

subject to a budget constraint

c(z, k) + h(z, k) ≤ y(z, k) + k − π(x(z, k)),

with a taxable activity x(z, k), total income y(z, k) = r(K)k + w(K)z, and a borrowing

constraint, h(z, k) ≥ k.

Definition 2 (Recursive Competitive Equilibrium) For a given share of government

expenditures g and the government policy π on a taxable activity x, a recursive competi-

tive equilibrium is a set of functions (v, c, h), aggregate levels (K,L), prices (r, w), and a

probability measure λ : Z ×B → [0, 1], such that for given prices and government policies,

1. the policy functions solve each agent’s optimization problem (7);

2. firms maximize profit (2);

3. the probability measure evolves according to a law of motion,

λ′(z′, B′) =
∑
z

∫
{(z,k)∈Z×B:h(z,k)∈B′}

Q(z, z′)λ(z, k) dk, for all (z′, B′)∈Z×B; (8)

4. the aggregation conditions hold, K =
∑

z

∫
kλ(z, k)dk, and L =

∑
z

∫
zλ(z, k)dk;

5. the government budget constraint, g(F (K,L)− δK) =
∑

z

∫
π(x(z, k))λ(z, k)dk.

In the recursive formulation, the optimal limiting government policy maximizes

W (λ) = max
π

∫ ∑
z

u(c(z, k))dk + βW (λ′), (9)

subject to allocations satisfying the conditions in Definition 2.5

The steady state of the economy corresponding to the limiting optimal government

policy π is characterized by a time-invariant distribution λ. That the optimal limiting

government policy π allows for a convergence to the steady state requires a regularity

condition on its properties. Denote the interval of individual savings at which an agent

with a productivity shock z is borrowing constrained as [k, k(z)]. For future reference also

denote k(z) as the highest savings by an agent with a current productivity shock z.

Assumption 1 (Regularity Condition) The government policy function π is such that

for each z ∈ Z, the individual savings function h : Z × B → B is a strictly increasing

function for k > k(z) and is constant h(k, z) = k for k ∈ [k, k(z)].

5Note that if the allocations satisfy the definition of the recursive competitive equilibrium then they
are also feasible.
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A similar condition is required for the existence of a unique stationary recursive equilibrium

in all models with heterogeneous agents (see Stokey et al. (1989)). It implies that the

savings function does not display pathological features (for example, that wealthy agents

save less than poor agents) so that the stationary distribution has a unique ergodic set.

We want to make explicit here that this assumption is completely innocuous.6

3 Solution to the Stationary Ramsey Problem as a

Calculus of Variations Problem

Since the problem is to find an optimal limiting, welfare maximizing continuous function

π ∈ C2(R+,R), we transform the Stationary Ramsey Problem into an operator form and

solve it by the calculus of variations.7 The calculus of variations is much more suitable for

solving a problem with complicated functional constraints and complex boundary condi-

tions than dynamic programming or optimal control methods.

In order to express the stationary recursive competitive equilibrium in this form, we

define two operators: on the Euler equation and on the stationary distribution. For a

given government policy function π, the Euler equation operator F is defined on the savings

function h : Z×B → B. The distribution operator L is defined on the probability measure

λ : Z × B → [0, 1] and on the savings function h. We assume that these functions are

square integrable functions on some closed domain8: h, λ ∈ L2(Z × B) where L2(Z × B)

is a Hilbert space with the inner product (u, v) =
∫
Z×B u(t)v(t)dt. The operator F :

C1(Z × B) ⊂ L2(Z × B) → C1(Z × B) ⊂ L2(Z × B) is a mapping from a space of

continuously differentiable functions into a space of continuously differentiable functions;

and the operator L : C1(Z × B) × C1(Z × B) → C1(Z × B) ⊂ L2(Z × B). All functions

in the calculus of variations depend on the government policy π and its derivative πx.

6The Regularity Condition guarantees that for all z ∈ Z, the government policy function π is such that
for given prices determined by K, there exists an inverse function h−1 assigning a current value of capital
k to savings h according to k = h−1(z, h). The Regularity Condition is used only in the law of motion for
the distribution λ in the operator for the distribution function in equation (11). Davila et al. (2012) make
a similar assumption (an increasing savings function h, in Appendix). In their case the savings policy is
not distorted by a government policy function.

7Mirrlees (1976), Davila et al. (2012) or Golosov et al. (2014) use the same approach.
8In more precise terms we actually assume that the functions are from the subspace W 1,2(Z×B) which

contains L2(Z ×B)-functions which have weak derivatives of order one.
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Operator F on the Euler Equation An individual agent’s optimization problem in

(7) is characterized by the Euler equation with an operator9

F(h) ≡ uc(c)− β
∑
z′

uc(c
′) [1 + y′k − πx(x′)x′k]Q(z, z′), (10)

where in the next period c′ = y(z′, h(z, k)) − π(x(z′, h(z, k))) + h(z, k) − h(z′, h(z, k)),

y′ = r(K ′)h(z, k) + w(K ′)z′, and x′ = x(z′, h(z, k)). The term [1 + y′k − πx(x′)x′k] is the

after-tax marginal return to capital when πx(x
′) is the next-period marginal government

policy. Finally, y′k = yk(z
′, h(z, k)) = r(K ′) is the marginal effect of individual savings on

total income and x′k = xk(z
′, h(z, k)) is the marginal effect of individual savings on the

taxable activity x′ next period.10 The operator equation is F(h) = 0.

Operator L on the Distribution Function Under the Regularity Condition, the op-

erator L for the distribution function in equation (8) is

L(λ, λ′, h) ≡ λ′(z′, k′)−
∑
z

Q(z, z′)
λ [z, h−1(z, k′)]
d
dk
h (z, h−1(z, k′))

, (11)

for all (z′, k′) ∈ Z × [h(z, k(z)), h(z, k(z))]. The operator equation is L(λ, λ′, h) = 0.

A variational approach to the Ramsey problem is based on a sequential formulation of

the government optimization problem. For descriptive purposes we present the recursive

formulation.11 Only two adjacent periods from the infinite time series are relevant for the

government maximization problem. For a given tax policy π′ and a savings function k′′ in

the next period, and for a given distribution λ, the government chooses π to maximize∑
z

∫
u
[
k(1 + r(K)) + zw(K)− π(x)− k′

]
λ(z, k)dk

+β
∑
z′

∫
u
[
k′(1 + r(K ′)) + z′w(K ′)− π′(x′)− k′′

]
λ′(z′, k′)dk′,

with the updating operator for the next-period distribution

λ′(z′, k′) =
∑
z

Q(z, z′)
λ [z, h−1(z, k′)]
d
dk
h (z, h−1(z, k′))

.

The term h−1(z, k′) denotes the value at k′ of the inverse of h for each z ∈ Z. We use a

change of variable k′ = h(z, k) to express dk′ = d
dk
h(z, k)dk. Merging the sums over z and

9In the text below, we present only the case of the unconstrained agents (for whom the Euler equation
holds with equality and h(z, k) > k). The case of borrowing constrained agents is in Appendix A.

10The Euler equation for an individual agent is standard. When the taxable activity equals total income,
F(h) ≡ uc(c)− β

∑
z′ uc(c

′) [1 + r(K ′)− πx(x′)r(K ′)]Q(z, z′).
11See Appendix for derivation and a similar discussion in Davila et al. (2012).
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the integration with respect to k, the optimal limiting tax function π maximizes∑
z

∫ {
u[k(1 + r(K)) + zw(K)− π(x)− h(z, k)]

+β
∑
z′

Q(z, z′)u
[
h(z, k)(1 + r(K ′)) + z′w(K ′)− π′(x′)− k′′

]}
λ(z, k)dk,

where the aggregate capital stock in the next period equals

K ′ =
∑
z′

∫
k′
∑
z

Q(z, z′)
λ [z, h−1(z, k′)]
d
dk
h (z, h−1(z, k′))

dk′ =
∑
z

∫
h(z, k)λ(z, k)dk.

The Ramsey problem in the calculus of variations is then

max
π

∑
z

∫ k(z)

k(z)

[
W(z, k; π, πx) + β

∑
z′

Q(z, z′)W ′(z, z′, k; π, πx)
]
λ(z, k)dk,

where

W(z, k; π, πx) ≡ u[k(1 + r(K)) + zw(K)− π(x(z, k))− h(z, k)],

W ′(z, z′, k; π, πx) ≡ u[h(z, k)(1 + r(K ′)) + z′w(K ′)− π′(x(z′, h(z, k)))− k′′].

We make explicit the dependence of operators W and W ′ on the tax function π and also

on its derivative πx. Solving for the optimal tax function, we need to move from the

coordinates k to the taxable activity x = x(z, k).12 Therefore,

max
π

∑
z

∫ x(z)

x(z)

[
W(z, x; π, πx) + β

∑
z′

Q(z, z′)W ′(z, z′, x; π, πx)
]
dλ(x), (12)

where

W(z, x; π, πx) ≡ u[k(z, x)(1 + r(K)) + zw(K)− π(x(z, x))− h(z, k(z, x))],

W ′(z, z′, x; π, πx) ≡ u[h(z, k(z, x))(1 + r(K ′)) + z′w(K ′)− π′(x(z′, h(z, k(z, x))))− k′′],
dλ(x) ≡ λ(z, k(z, x))kx(z, x).

The bounds on taxable activity, x(z) and x(z), for each z ∈ Z, are endogenous functions of

a chosen government policy. The lower bound x(z) = x(z, k) depends on z, on the exoge-

nously given lower bound on capital k, and on the equilibrium prices. Similar arguments

apply to the upper bound x(z) = x(z, k).13

12The taxable activity x is now the independent variable and k = k(z, x) is its function. We want to
stress again the dependence of the operator W and W ′ on the aggregate capital stock K and K ′ through
general equilibrium effects, although it is not written as one of its arguments.

13Clearly, the maximal interval is [x(z), x(z)] where x(z) is the lower bound of the lowest shock, z, and
x(z) is the upper bound of the highest shock, z. So any taxable activity interval associated with a shock
z ∈ Z is a subinterval of the maximal interval, [x(z), x(z)] ⊂ [x(z), x(z)].
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The aggregate capital stock in the next period is defined as

K ′ ≡
∑
z

∫ x(z)

x(z)

h(z, k(z, x)) dλ(x), (13)

and the side conditions for the government budget constraint is∑
z

∫ x(z)

x(z)

G[z, x; π, πx] dλ(x) = 0, where G[z, x; π, πx] ≡ π(x)− gy(z, k(z, x)). (14)

Definition 3 (Calculus of Variations Ramsey Problem) The Ramsey Problem in

the calculus of variations is a generalized isoperimetric maximization problem (12), sub-

ject to the government budget constraint (14), with the individual policy function h given

implicitly by the operator Euler equation F(h) = 0, the law of motion for the distribution

function, λ, given implicitly by the operator equation L(λ, λ′, h) = 0, the aggregate capital

stock (13), the endogenous bounds of taxable activity, x(z) and x(z), for all values of z ∈ Z,

and the free values of the government policy at the extreme lower and upper bounds.

Note that since the upper bounds k(z) are endogenous, the endpoints x(z) are equality

constrained. This might be also true for the lower bounds k(z) and their endpoints x(z).

4 Necessary and Sufficient Conditions for the Station-

ary Government Policy Function

In this Section we derive the first-order necessary and second order sufficient conditions for

the optimal limiting government policy function. In order to derive these conditions in the

calculus of variations, we need to specify the derivatives of the functionals W and G with

respect to marginal changes in government policy, π and πx. For this purpose, we use the

concept of generalized derivatives on mappings between two Banach spaces (B-spaces), the

Fréchet derivatives. The Fréchet derivative is a generalization of the concept of a derivative

on functional and operator spaces (see Luenberger (1969) or Ok (2007)).14

Definition 4 (Fréchet Derivative) Given a nonlinear operator N (u) on function u, the

Fréchet differential δN (u; δh) = Nuδh is

lim
‖δh‖→0

‖N (u+ δh)−N (u)−Nuδh‖
‖δh‖ = 0,

14The compliance of the Fréchet derivatives (also called the F-derivatives) with the derivations of the
first order conditions in the calculus of variations is reflected by the fact that the F-differential is identical
to the variation. Our derivations are more complicated than the standard Fréchet derivative because our
functional equations are recursive. Practically, the Fréchet derivative can be obtained using a weaker
concept of the Gateaux derivative Nu = limε→0N (u+ εδh)/ε when the obtained derivative is continuous.

12



where Nu is the Fréchet derivative.

Define the Lagrange function L for the Calculus of Variations Ramsey Problem in

Definition 3, for each z ∈ Z, as

L(z, x) =


0 for x ∈ [x(z), x(z)),

W(z, x) + µG(z, x) for x ∈ [x(z), x(z)],

0 for x ∈ (x(z), x(z)].

(15)

Note that the social welfare function is the sum of integrandsW(z, x) =W [z, x; π(x), π′(x)]

integrated on intervals [x(z), x(z)] for each z ∈ Z. The same is true for integrands L(z, x).

Theorem 1 (First Order Necessary Conditions) Using a modified Lagrange function

L̃ for the Calculus of Variations Ramsey Problem in Definition 3,

L̃(z, x) =


0 for x ∈ [x(z), x(z)),

[L(z, x) + β
∑

z′ Q(z, z′)L′(z, z′, x)]λ(z, x)kx(z, x) for x ∈ [x(z), x(z)],

0 for x ∈ (x(z), x(z)],

for each z ∈ Z, the first order necessary conditions for the Ramsey problem are

1. the Euler-Lagrange equation,∑
z

(
L̃π(z, x)− d

dx
L̃πx(z, x)

)
= 0; (16)

2. the transversality condition on the free boundary value, π(x(z)), at the equality con-

strained endpoint, x(z),[
L̃(z, x)−

(
πx(x)− kx(z, x)

ωπ(z, x)

)
L̃πx(z, x)

]
x=x(z)

= 0; (17)

3. the transversality condition on the free boundary value, π(x(z)), at the equality con-

strained endpoint, x(z),[
L̃(z, x)−

(
πx(x)− kx(z, x)

ωπ(z, x)

)
L̃πx(z, x)

]
x=x(z)

= 0; (18)

4. and the condition on the Lagrange multiplier, µ, at which (14) is satisfied.

Proof At the endogenous upper bound the endpoint is equality constrained. If the extreme

lower bound is exogenous, then the condition 3 simplifies to L̃πx(z, x)|x=x(z) = 0. For the

proof and more detailed specifications of all terms see the Appendix.

The total variation with respect to the tax schedule is equal to the sum of the total

variation of utilities and the total variation of the budget constraint weighted by the shadow

13



price µ in two consecutive periods. The total variation with respect to the optimal limiting

tax policy schedule, i.e. π = limt→∞ πt, is equal to zero. Denoting ∆ ≡ δ
δπ
− d

dx
δ
δπx

as the

operator for the total variation, the Euler-Lagrange equation is simply
∑

z ∆L̃ = 0.

The Lagrange-Euler conditions in Theorem 1 contain the tradeoff between the tax level,

π, and its curvature captured by the marginal tax rate, πx. At the optimum, the marginal

effect of a change in the level of the tax schedule π on social welfare, L̃π, has to be equal

to the marginal effect of an implied change in the tax schedule curvature expressed by the

derivative of the implied change, d
dx

L̃πx , due to the changing marginal tax rate, πx.
15

Lemma 1 The Euler-Lagrange equation (16) can be written as∑
z

{[
− uc(c) + β

∑
z′

Q(z, z′)uc(c
′)[1 + r − πx(x′)x′k]

]
h∗π (19)

−uc(c) + µ

+β
∑
z′

Q(z, z′)

(∫
ψ(z, z′, x)

[
uc(c

′)− µg
]
h∗πλ

∗(z, k(z, x))kx(z, x)dx+ µξ(z, z′, x)h∗π

)
− d

dx

[
β
∑
z′

Q(z, z′)

(∫
ψ(z, z′, x)

[
uc(c

′)− µg
]
h∗πxλ

∗(z, k(z, x))kx(z, x)dx+ µξ(z, z′, x)h∗πx

)]
−ελ∗kxx (z, x)

}
λ∗(z, k(z, x))kx(z, x)dx ≤ 0,

where

ψ(z, z′, x) ≡ h∗(z, k(z, x))rK(K∗) + z′wK(K∗),

ξ(z, z′, x) ≡ πx(x(z′, h∗(z, k(z, x))))xk(z
′, h∗(z, k(z, x)))− gr(K∗),

ελ
∗kx
x (z, x) ≡

d
dx

(λ∗(z, k(z, x))kx(z, x))

λ∗(z, k(z, x))kx(z, x)
= ελ

∗

x (z, x) + εkxx (z, x),

Proof The Euler-Lagrange equation results from a substitution of terms defined in Ap-

pendix B into Theorem 1.

The government constructs its optimal limiting tax schedule by balancing the distribu-

tional effect on the individual savings function, h∗, and the general equilibrium effect on

the aggregate capital stock. The first line in the Euler-Lagrange equation (19) represents

an agent’s intertemporal first-order condition that takes into account the tax schedule and

is zero except for the borrowing-constrained agents.16 In the second line the optimal limit-

ing tax schedule directly affects the disposable income and, therefore, the marginal utility

15If we restrict the tax policy to be only a flat tax and the marginal tax rate is constant, the first-order
conditions degenerate to the standard optimization problem L̃π(z, x) = 0.

16The Euler-Lagrange equation is written with inequality as it includes agents at the lower bound. If
written with equality, the transversality condition at the lower bound applies to the case of borrowing
constrained agents.

14



of consumption in the current period, −uc(c), counterbalanced by an opposite effect of

the Lagrange multiplier, µ, on the government budget constraint. The indirect effects of

agents’ savings, h∗π, are aggregated to changes in the next-period aggregate capital stock

weighted by marginal utility, β
∑

z′ Q(z, z′)
∫
ψuc(c

′)h∗πλ
∗kxdx. In a similar way the shape

of the tax schedule influences the equilibrium through the effect of the marginal tax rate πx

on individual savings function, h∗πx , expressed by β
∑

z′ Q(z, z′)
∫
ψuc(c

′)h∗πxλ
∗kxdx. Note

that both aggregate effects arise through the sensitivity functions h∗π and h∗πx . Finally, the

last line of the Euler-Lagrange equation is the semi-elasticity of the transformed distribu-

tion function with respect to the taxed activity, ελ
∗kx
x . It can be decomposed into a sum of

the semi-elasticity of the distribution function and the semi-elasticity of the related capital

kx with respect to x.

The pecuniary externality effect operates through changes in equilibrium prices and

can be written as in Davila et al. (2012),

ψ(z, z′, x) = rK(K∗)K∗
(
h∗(z, k(z, x)))

K∗
− z′

L

)
.

For a labor intensive income the term in the brackets is negative and ψ > 0 (since rK < 0).

Compared to Davila et al. (2012), the government budget constraint causes addi-

tional pecuniary externality effects. First, there are aggregate capital effects on the

government budget balance through the change of the tax rate and the marginal tax

rate, −gβ∑z′ Q(z, z′)
∫
ψuc(c

′)h∗πλ
∗kxdx, and −gβ∑z′ Q(z, z′)

∫
ψuc(c

′)h∗πxλ
∗kxdx. Sec-

ond, individual savings decisions impact the government budget constraint through

the change in the tax schedule, ξ(z, z′, x) = [πx(x
′)xk(x′) − gr(K∗)]h∗π. The first

term captures the change in tax contributions and the second the change in govern-

ment spending due to the change in the agent’s capital income. The total effect is

β
∑

z

∑
z′ Q(z, z′)µξ(z, z′, x)h∗πλ

∗(z, k(z, x))kx(z, x)dx, weighted by λ∗(z, k(z, x))kx(z, x)dx

across all agents with (z, x). A similar decomposition applies to marginal tax changes h∗πx .

Finally, to relate our results to Davila et al. (2012), we formulate the Euler-Lagrange

equation for their constrained efficiency problem in which the social planner manipulates

savings of each agent. As each agent receives back a lump-sum transfer equal to changes

in investment, there is neither the government budget constraint (Lagrange multiplier µ)

nor the direct tax effect on disposable income, −uc(c). Since the tax is not a function of

x, the terms with π(x) as well as d/dx will disappear from the equation. As the social

planner chooses savings directly, h∗π = 1. The first-order condition is then

−uc(c) + β
∑
z′

Q(z, z′)uc(c
′)[1 + r]

+β
∑
z

∑
z′

Q(z, z′)

∫
ψ(z, z′, x)uc(c

′)λ∗(z, k(z, x))kx(z, x)dx ≤ 0,
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identical to the first-order condition in Davila et al. (2012) with the last term equal to the

extra term ∆.17 In our formulation, the function ψ is weighted by agents’ marginal utilities

and the whole term also enters an individual agent’s Euler equation as a number.

Theorem 2 (Second Order Sufficient Conditions) A tax schedule π satisfying the

first-order conditions in Theorem 1 attains a strict maximum if and only if (i) the La-

grange function defined in equation (15) satisfies the second-order Legendre condition∑
z∈Z

L̃πxπx(z, x) < 0 for all x ∈ [x(z), x(z)] ,

and (ii) the interval [x(z), x(z)] contains no points conjugate to x(z).

Proof For the proof see the Appendix.

The Euler-Lagrange equation in Theorem 1 and the modified Legendre condition in

Theorem 2 represent necessary and sufficient conditions for concavity and a unique maxi-

mum of the Calculus of Variations Stationary Ramsey Problem. In the following Sections

we illustrate these effects numerically.

4.1 The Effects of Government Policy on the Equilibrium

If we knew how agents’ saving policies h and simultaneously how the distribution λ depend

on the government policy schedule, i.e. if we could solve at equilibrium prices for the optimal

policy which is a function of the distribution and prices which in turn are determined by

h(·) which is itself a function of the optimal policy and prices, the task of the derivation of

the first order conditions for this dynamic optimization would be straightforward. However,

not only we have to solve for these functions simultaneously but also we are in a much more

difficult situation since for any government policy schedule, agents’ saving policy and the

distribution functions are known only implicitly as a solution to the two operator equations

(F(h) = 0 and L(λ, λ′, h) = 0) and the aggregate conditions for equilibrium prices.

The next Lemma derives the effects of the government policy function π on the operator

Euler equation by specifying four unknown “sensitivity” functions hπ : Z × B −→ R,

hπx : Z ×B −→ R, hπxπ : Z ×B −→ R, and hπxπx : Z ×B −→ R. Denote the next-period

after-tax marginal return to capital as R′ = 1 + y′K − πx(x′)x′K .

Lemma 2 (The Effects of π and πx on the Euler Equation) The total F-derivati-

ves of the operator Euler equation F with respect to the government policy function π

17Note that the summation over current shocks z disappears as the planner chooses allocations contingent
on each shock. The Euler-Lagrange equation for a flat-tax schedule is in the Appendix.
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and to its derivative πx are

Fi = ucc(c)ci − β
∑
z′

Q(z, z′)
{
ucc(c

′)c′iR
′ + uc(c

′)R′i
}

= 0, (20)

where the subscript denotes derivatives with respect to i ∈ {π, πx}, and

Fij = uccc(c)cicj + ucc(c)cij − (21)

β
∑
z′

Q(z, z′)
{[
uccc(c

′)c′ic
′
j + ucc(c

′)c′ij
]
R′ + ucc(c

′)
[
c′iR

′
j + c′jR

′
i

]
+ u′(c′)R′ij

}
= 0.

where the subscripts denote derivatives with respect to ij ∈ {πxπx, πxπ}.

Proof For the proof and a full definition of terms see the Appendix.

We obtain five functional equations (10), and (20)-(21) in unknown functions h, hπ, hπx ,

hπxπx , and hπxπ, respectively. Finally, by adding the first-order conditions from Theorem

1, and the functional equation for the distribution function, λ, the problem of finding the

optimal government policy π is a system of seven functional equations in seven unknown

functions with two side conditions and one condition on the Lagrange multiplier.

5 An Example: The Optimal Income Tax Schedule

In this section we demonstrate our method by finding the optimal limiting government

policy π defined as a tax on total income from capital (net of depreciation) and labor. The

taxable activity is

x(z, k) = y(z, k) = r(K)k + w(K)z,

and the individual budget constraint is

c(z, k) + h(z, k) ≤ x(z, k)− π(x(z, k)) + k.

As before, there is a borrowing constraint k = 0 and the total tax revenues are equal to

a fraction g of the total output. In the abbreviated notation, the Euler equation for a

(z, k)-agent’s optimal savings function h is now

u′(c) ≥ β
∑
z′

u′(c′) [(1 + r(K ′)− π(x′)r(K ′)]Q(z, z′),

where c′ = x′ − π(x′) + h − h′, x′ = r(K ′)h + w(K ′)z′, and h′ = h(z′, h(z, k)). Note that

for this specification xk = yk = r(K) and kx = 1/xk = 1/r(K).
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5.1 Admissible Tax Functions

Because the tax schedule is an arbitrary continuous function, we must ensure that the

first-order approach is valid and that the stationary recursive equilibrium exists.18 In

order to characterize the admissible tax functions and to prove the Schauder Theorem for

economies with distortions, we follow the notation in Stokey et al. (1989). For each agent

(z, k) ∈ B×Z, denote the after-tax gross income as ϕ(z, k) ≡ x(z, k)−π(x(z, k)) + k, and

rewrite the Euler equation as

u′(ϕ(z, k)− h(z, k)) = β
∑
z′

u′(ϕ(z′, h(z, k))− h(z′, h(z, k)))ϕk(z
′, h(z, k))Q(z, z′),

where ϕk(z
′, h(z, k)) = 1 + r(K ′)− πx(x(z′, h(z, k)))r(K ′) is the marginal after-tax return

of investment.

Theorem 3 For a given tax schedule π : R+ → R, if for each (z, k) ∈ B×Z, ϕk(z, k) > 0,

and ϕ is quasi-concave, then the solution to each agent’s maximization problem and the

stationary recursive competitive equilibrium exist.

Proof See the Appendix.

The following corollary characterizes the set of admissible tax functions.

Corollary 1 (Admissible Tax Functions) Let C2(R+) be a set of continuously differ-

entiable functions from R+ to R. If a tax function π ∈ C2(R+) belongs to the set of

admissible tax functions Υ,

Υ =

{
π ∈ C2(R+) : πx(x) < 1 +

1

r(K)

}
for all x ∈ [r(K)k+w(K)z, r(K)k+w(K)z], then it satisfies the conditions of Theorem 3.

The above statement follows directly from the fact that ϕk(z, k) > 0 and that ϕ is quasi-

concave. The corollary implies that the marginal tax rate must be smaller than 1+1/r(K).

This upper bound is not likely to bind for a very wide range of tax schedules.19 Application

of Theorem 1 and Theorem 2 then implies necessary and sufficient conditions for the unique

maximum attained by the tax schedule.

18Again, we analyze the case of borrowing constrained agents in the Appendix.
19For the targeted equilibrium interest rate in the progressive-tax steady state r = 0.04, the upper bound

on the marginal tax rate is equal to 26. When numerically solving for the optimal tax schedule in the
next Section we do not impose any bounds on the marginal tax rate but we check the admissibility of the
optimal tax schedule ex post.
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Table 1: Parameters of the Benchmark Economy

β = 0.9309 σ = 2.0 α= 0.36 δ = 0.08 g=0.189

Earnings Process (Davila et al. (2012)):

z ∈ Z = {1.000, 5.290, 46.550} Q(z, z′) =

0.992 0.008 0.000
0.009 0.980 0.011
0.000 0.083 0.917



6 Numerical Solution

In this Section we solve for the optimal limiting tax schedule and compare the associated

steady state allocations to those resulting from the progressive tax schedule in the U.S.

economy and from the usual flat-tax reform. In order to evaluate welfare implications, we

conduct a transition analysis.

We use the same calibration as Davila et al. (2012). The three-state, first order Markov

process of the uninsurable idiosyncratic shock to labor productivity is based on Diaz-

Jimenez et al. (2003) with large and asymmetric wage risk necessary for a realistic disper-

sion of both earnings and wealth. We set the discount factor so that in the progressive-tax

steady state the capital-output ratio equals 3 and the equilibrium interest rate is 4 percent.

Other parameters in Table 1 are standard, α = 0.36, δ = 0.08, and the risk aversion pa-

rameter σ = 2 (intertemporal elasticity of substitution of 1/2). The stationary distribution

of productivity shocks is {0.498, 0.443, 0.059}.
We model the progressive tax schedule as Heathcote, Storesletten, and Violante (2016)

by specifying a tax on total income as a function

πPT (y(z, k)) = y(z, k)− χy(z, k)1−τ ,

where τ is a parameter of the rate of progressivity and χ is a level parameter that clears the

government budget constraint. The tax function is progressive if 0 < τ < 1 with strictly

increasing marginal tax rates.20 For the U.S. economy, Heathcote et al. (2016) estimate

from the 2000-2006 PSID data that τ = 0.161. In each period the government is required

to collect tax revenues equal to 18.9% of the total output. As depreciation of capital is

deducted from taxable income, in the flat-tax rate steady state τ = g/(1− δK/Y ).

The optimal limiting tax policy is a solution to the system of functional equations

defined in Theorem 1, the functional equation for the stationary distribution λ, the two

side conditions, and the Lagrange multiplier condition. We solve this functional equations

problem by the least squares projection method described in Appendix C. Definitions of

functional equations are in Appendix D, together with additional results and a sensitivity

analysis for different parameters of risk aversion.21 In Appendix E we also compute an

20Examples of monotone tax functions are Conesa and Krueger (2006) and Gouveia and Strauss (1994).
21The least squares projection method is an efficient and well-behaved method for functional equations
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Figure 1: The optimal average tax rate and the optimal marginal tax rate.

alternative calibration for a low wealth dispersion economy based on Aiyagari (1994).

6.1 Steady State Results

The optimal limiting average tax schedule is U-shaped. In Figure 1, the average tax rate

at the lowest total income is 14%, decreases to a minimum of 2%, and rises to 48% at the

highest level of total income. The marginal tax rates are also U-shaped: close to zero for

low incomes, negative at medium incomes, and positive at higher income levels.22

Table 2 shows steady state outcomes of the progressive, flat, and optimal limiting tax

schedules. Under the progressive tax, the persistent earnings process generates a large

fraction of poor agents and a substantial right tail of the wealth distribution with a Gini

coefficient of wealth above 0.8, exactly as in Davila et al. (2012). The flat-tax reform

increases the aggregate capital stock by 31% and output by 10%, while only slightly in-

creasing inequality. The optimal limiting income tax increases the aggregate capital stock

by only 3 percent. The coefficient of variation of wealth falls substantially and the Gini

coefficient of wealth inequality becomes 0.698. While in the progressive- and flat-tax steady

problems. For a detailed explanation of applying projection methods to stationary equilibria in economies
with a continuum of heterogeneous agents see Bohacek and Kejak (2002).

22The optimal limiting tax schedule easily satisfies the admissibility condition in Corollary 1. Similar
marginal tax rates are found in dynamic models of Kapicka (2013) or Golosov et al. (2011) and in static
models of Diamond (1998) and Saez (2001). Building on Mirrlees (1971) and Mirrlees (1976) seminal
work, Kocherlakota (2005), Golosov et al. (2003), or Albanesi and Sleet (2006) study optimal social
planner policies with asymmetric information needed for characterization of optimal policies.

20



Table 2: Steady State Results

Progressive Flat Optimal

τ 0.161 0.265 —

Aggregate assets 3.000 3.934 3.093
Output 1.000 1.102 1.011
Capital-output ratio 3.000 3.568 3.059
Interest rate (%) 4.000 2.092 3.771

Coeff. of variation of wealth 2.125 2.313 1.501
Gini wealth 0.812 0.838 0.698
Perc. of wealth of the top 5% 0.433 0.475 0.276

states the top five percent of richest agents hold more than 40 percent of all assets, the

optimal limiting tax schedule lowers this share to 27.6 percent.

There are two important effects the optimal limiting tax schedule takes into account.

The first is the general equilibrium price effect derived in Davila et al. (2012). Poor agents

in the benchmark economy have labor intensive incomes and an increased aggregate capital

stock improves their welfare through higher equilibrium wages: the extra term defined in

Davila et al. (2012) is positive in all our simulations, suggesting an overaccumulation of

capital in a competitive equilibrium relative to the constrained efficient allocation by a

social planner.
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Figure 2: Sensitivity of savings to changes in the tax schedule hπ.

The second, distributional effect is related to agents’ insurance and mobility within the

stationary distribution. The large and persistent dispersion of earnings makes redistribu-

tion important. While in Davila et al. (2012) the wealthy agents are only induced to save
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Table 3: Steady State Distribution of Assets and Tax Contributions

Assets Tax Contributions
Progress. Flat Optimal Progress. Flat Optimal

1st Quintile 0.1 0.1 0.2 -3.4 5.8 2.6
2nd Quintile 0.2 0.2 0.3 -3.4 5.9 2.9
3rd Quintile 1.7 1.5 8.1 4.0 14.4 3.3
4th Quintile 9.9 7.0 18.8 9.6 16.4 4.3
5th Quintile 88.3 91.9 72.7 89.9 57.4 89.5

Top 10% 66.4 71.6 48.5 81.7 54.3 87.0
Top 5% 43.3 47.5 27.6 64.5 41.1 76.3
Top 1% 12.1 13.5 6.6 14.5 8.8 17.4

Note: Each entry is the percentage share of assets owned or taxes paid by each group.

more, under the optimal limiting tax schedule they are taxed in order to provide transfers

to agents with high marginal utility. Figure 2 shows the sensitivity functions of savings to

changes in the optimal tax schedule, hπ, for three labor productivity shocks zL < zM < zH .

The response of savings by agents with the low and medium productivity shocks is negligi-

ble across the ergodic set of the wealth distribution as all perturbations of the tax schedule

are consumed by the agents. Only agents with the highest labor productivity alter their

savings: a perturbation of the convex increasing tax schedule reduces savings, hπ(k, z) < 0.

The substantial right tail of the income distribution contributes a large fraction of the

total tax revenues. Table 3 shows that the optimal tax schedule puts most of the tax burden

on the top decile of the wealth distribution. The top decile pays almost 90 percent and

the top five percent pays more than 3/4 of the total tax revenues, respectively, much more

than in the progressive-tax steady state. For a comparison, the flat-tax reform dramatically

increases the aggregate capital stock without taking into account the distribution of agents.

Under the flat tax, the share of the tax burden of the top decile is only 54.3% of all tax

contributions compared to above eighty percent in the other steady states.

In general, the low and initially decreasing marginal tax rates of the limiting optimal

tax policy insure poor agents and improve efficiency by lowering distortions in the economy.

The marginal tax rates motivate the savings of poor agents towards the desired aggregate

capital level while the increasing rates on high incomes deliver revenues for redistribution.

The optimal limiting tax schedule lowers the share of assets held by the top quintile to

72.7%; the top decile owns less than one half of total assets. This redistribution is reflected

in the low wealth inequality in the optimal limiting tax steady state.

6.2 Welfare Gains from the Optimal Limiting Tax Schedule

The top part of Table 4 shows that the optimal tax schedule delivers large average welfare

gains in the steady state, 1.7% and 6.1% with respect to the progressive and the flat
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Table 4: Welfare Gains from the Optimal Tax Schedule (in %)

Progressive Flat

Steady State 1.735 6.129

Transition
Average Welfare -0.767 14.884
Aggregate Component -0.580 5.670
Distributional Component -0.188 8.720

Political Support 46.471 94.129

tax steady state, respectively.23 Because a pure steady state comparison involves different

stationary distributions and ignores transition costs, the rest of Table 4 shows welfare gains

in terms of expected present discounted values from an unanticipated reform in which the

optimal limiting tax schedule is imposed on the initial progressive- or flat-tax steady state.24

We adopt the approach of Domeij and Heathcote (2004) and decompose the average welfare

gain into an aggregate and a distributional component. The former denotes a hypothetical

expected present value of per-period consumption if a household consumes each period the

same fraction of aggregate consumption as in the pre-reform steady state. The latter is

the difference between the average welfare gain and the aggregate component.25

Imposing the optimal limiting tax schedule on the progressive-tax steady state leads

to short-run costs in both distributional and aggregate components. The progressive tax

steady state provides better short-time insurance to the poorest agents as well as requires

more savings. On the other hand, in the flat-tax steady state the aggregate capital stock

is very high and can be deaccumulated during the transition. This additional consumption

as well as increased insurance delivers a 14.8% welfare gain per period and a majority

political support. Detailed results in Appendix D show that all but the high productivity

agents support the tax reform.

Obviously, we do not compute an optimal transition process that also adjust the shape

of the optimal tax policy in each period of the transition. Also, efficiency gains in the

terminal steady state are large and compensation schemes could be designed to alleviate

welfare losses from the transition in order to obtain political support for the reform.26

23Steady state average welfare is defined as the expected discounted value of being born into a stationary
equilibrium, expressed in consumption units per period.

24The average welfare gain from the optimal tax reform is defined as a constant percentage increase in
consumption of each household in the pre-reform steady state that delivers the same expected utility as
when the optimal limiting tax schedule is implemented. We guess a sufficiently large number of convergence
periods and iterate on paths of equilibrium prices and tax levels to clear markets and the government budget
constraint in each period of the transition.

25In a representative agent economy, the distributional component is zero. If the aggregate component is
positive, the reform is Pareto-improving if it leaves the distribution of consumption unchanged. In Domeij
and Heathcote (2004), the distributional component is negative and outweighs the aggregate component
as the capital income tax reform shifts taxation to labor income.

26See Gottardi et al. (2011) for an analysis of issuing debt against subsequent efficiency gains.
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Figure 3: Optimal average and marginal tax rates for different government discount factors.

6.3 Different Welfare Criteria

We now relate our results to recent findings in the private information literature that

society should be more patient than individual households.27 In dynamic models, the

social discount factor affects the way how government (social planner) balances efficiency

and equality between the current and future generations (or periods). Indeed, the high

aggregate capital stock in the constrained optimum in Davila et al. (2012) might arise in

an economy whose social planner is more patient than agents. To study this issue, we set

the government’s discount factor in the calculus of variations Ramsey problem in equation

(12) to β̂ that differs from the benchmark discount factor β used by agents in the Euler

equation (10).

Figure 3 shows that when the social discount factor is lower than that of agents, β̂ < β,

the optimal tax schedule puts more weight on current redistribution and less weight on the

long-term general equilibrium effect from the aggregate capital stock accumulation. The

optimal tax schedule for a very low β̂ = 0.89 is actually increasing and convex. On the

other hand, a very high social discount factor leads to a more convex U-shaped average tax

27This issue has been studied in an asymmetric information framework as a tool to overcome the immis-
eration result of Atkeson and Lucas (1992). Phelan (2006) achieves this by assigning equal weights on all
future generations, while Farhi and Werning (2007) place a positive and vanishing Pareto weight on ex-
pected welfare of future generations. Farhi and Werning (2010) analyze a dynamic Mirrleesian model with
productivity shocks and find that a progressive estate tax implements efficient allocations by providing the
necessary mean reversion and insurance across generations. Farhi et al. (2012) study efficient non-linear
taxation of labor and capital in a dynamic Mirrleesian model without commitment. In order to lower the
capital stock and, therefore, the gains from a deviation, the marginal tax on capital income is progressive.
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Figure 4: Capital-output ratio (left axis) and wealth inequality (right axis) for different
government discount factors.

function needed for saving incentives (see Bakis et al. (2015) for similar results in a dynastic

economy). Figure 4 shows that both the capital-output ratio and wealth inequality increase

in β̂. When β̂ = 0.99, the capital-output ratio rises to 3.38 and Gini coefficient of wealth

to 0.80. On the other hand, a very low discount rate β̂ = 0.89 decreases wealth inequality

to 0.485. In Appendix D we report all steady state and transition results. For β̂ < β, the

optimal tax reform of the progressive-tax steady state is supported by the majority of the

population. This is because for low β̂s the government prefers a lower aggregate capital

stock, so agents can deaccumulate and consume their capital stock during a transition, and

vice versa for high social discount factors. For the same reason, the optimal tax reform of

the flat-tax economy makes the majority of agents better off.

The shape of the optimal tax schedule is necessarily sensitive to the government’s

objective function. Heathcote and Tsujiyama (2017) characterize the mapping between a

taste for redistribution in a class of Pareto weight functions and the progressivity parameter

in Heathcote et al. (2016). When the taste for redistribution increases, the marginal

tax schedule moves from being upward sloping to becoming a U-shaped function. In

their simulations, the welfare gains from an optimal progressive tax reform are very small.

Appendix F discusses these extensions and other results in detail.
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6.4 Sensitivity Analysis

Finally, we analyze the optimal limiting tax schedule in the benchmark calibration for

different values of risk aversion σ. The U-shape of the optimal limiting average tax schedule

holds in all simulated economies. An increasing risk aversion puts more weight on the

distributional effect relative to the general equilibrium effect and the average tax schedules

become more progressive with higher σ. The Gini coefficient of wealth falls to 0.59 when

σ = 4. In the flat-tax economy, a higher risk aversion induces agents to accumulate

more capital as a buffer stock against idiosyncratic risk (see Imrohoroglu (1998)), rising

transitional gains as a consequence. Because general equilibrium effects are more important

at low risk aversion, the negative slope of the average tax rates is steeper at low incomes.

6.5 A Low Wealth Dispersion Economy

Mirrlees (1971), Mankiw et al. (2009), or Diamond and Saez (2011) note that the shape of

the marginal tax schedule is sensitive to the distribution of skill or income. In Appendix E,

we evaluate our example in Section 6 for a more traditional calibration based on Aiyagari

(1994). The three-state, first order Markov process of the idiosyncratic shock to labor

productivity is estimated from the household annual labor income process in the PSID

data by a first-order autoregression with a persistence parameter 0.6 and a volatility 0.2.

This calibration of the earnings process leads to a steady state with an unrealistic,

low dispersion of wealth. The optimal limiting average tax schedule is also U-shaped

with an important upward shift: the average tax rate at the lowest total income is 37%,

decreases to a minimum of 24%, and rises to 48% at the highest level of total income. The

marginal tax rates are close to zero for low incomes and rise at higher income levels to

provide resources for redistribution and insurance. In this low wealth dispersion economy,

the earnings process is not very persistent, wealth inequality is low and poor agents can

escape poverty easily. This allows the optimal tax schedule to focus more on the general

equilibrium price effect, increasing the aggregate capital stock by 18.7%, to a higher level

than in the flat-tax steady state. The savings decisions of all types of agents are very

sensitive to perturbations of the optimal limiting tax schedule. The degree of persistence

in the idiosyncratic labor productivity process has similar effects to those found in Evans

(2017). In that paper, the optimal capital tax rate balances the general equilibrium price

effect and redistribution. When the productivity shocks are iid, the former effect dominates

and the planner subsidizes savings decisions as in Davila et al. (2012). When persistence

of the productivity shocks increases, the latter effect is more important and the long-run

capital tax is positive. Golosov et al. (2016) and Mankiw et al. (2009) also find U-shaped
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marginal rates originating from a large fraction of agents with low productivity.28

7 Conclusion

In this paper, we provide a solution method for optimal limiting government policies in

a general equilibrium economy with incomplete markets. We think of these policies as

optimal because they take simultaneously into account their effects on the distribution of

agents and equilibrium prices. In our example, we find the optimal limiting tax schedule

on total income in a stationary Ramsey problem. As in Diamond (1998), Saez (2001), or

Golosov et al. (2011), the optimal limiting average tax schedule is U-shaped. The shape of

the optimal limiting tax schedule balances the efficiency-equality trade-off between general

equilibrium price effects and redistribution. In the calibrated economy with high wage and

wealth dispersion, the distributional effects dominate and the high income agents contribute

a large fraction of the total tax revenues. Initially low and decreasing marginal tax rates

improve efficiency by lowering distortions in the economy. When a government discounts

future more than agents or if the latter are more risk averse, the short-term distributional

effect is more important than the long-term, general equilibrium effect from changes in the

aggregate capital stock. Compared with Davila et al. (2012), the aggregate capital stock

increases only slightly but the optimal limiting tax function significantly reduces inequality.

In other words, without agent-specific lump-sum transfers the optimal tax policy would

not subsidize rich agents’ savings at the cost of not providing insurance to poor agents

with high marginal utility. Our results confirm the conjecture in Davila et al. (2012) that

simple uniform policies cannot achieve the constrained optimum.

This paper is a first step for analyzing more realistic models with important policy im-

plications. Our example shows that analyzing linear tax functions or restricting functional

forms to progressive taxation might miss a large part of efficiency and equality effects. The

most important extension of the model would introduce the extensive labor margin. Labor

decisions are more relevant for poor agents while savings decisions are more important for

wealthy agents. In a simplified two-period model, Davila et al. (2012) find that the pe-

cuniary externality might induce the agents to supply inefficiently low effort. Park (2017)

analyzes the constrained optimum with endogenous human capital, motivated by Huggett

et al. (2011) who find that the determinants of endogenous human capital dispersion are

more important than idiosyncratic shocks as a source of lifetime earnings dispersion. Be-

cause the planner in Park (2017) can only alter equilibrium prices, the qualitative results

28Heathcote and Tsujiyama (2017) the shape depends on how much fiscal pressure the government faces.
When fiscal pressure is low, the marginal tax schedule is monotone increasing. As fiscal pressure increases,
the optimal schedule becomes first flatter and then U-shaped.
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of Davila et al. (2012) do not change. However, numerical simulations lead to a lower

capital-labor ratio and a reduced inequality relative to the economy with exogenous labor.

While the optimal limiting tax schedule might motivate poor agents to increase labor ef-

fort, the welfare of poor households could be better improved by reducing the risky part of

their income through a lower wage. Therefore, the redistribution channel arising from the

endogenous labor income dispersion could further reduce inequality and lower the optimal

capital-labor ratio. It is also not clear whether the optimal tax schedule would still display

increasing marginal rates as they reduce the returns to labor and the returns to human

capital investment.

In our future research we also plan to study the optimal limiting tax schedule with

life-cycle income profiles as in Golosov et al. (2011) and Farhi and Werning (2012). With

respect to the class of optimal government policies, an important extension is in relaxing

the assumption on continuity of the tax function. Finally, we would also like to explore

different (Rawlsian) welfare functions and the role of government debt. Further restrictions

on available policy tools imply additional aggregate and distributional effects. One can also

analyze different calibrations with heterogeneous preferences, opportunities to participate

in labor or asset markets. A major task would be an extension of our methodology to the

private information literature. Finally, we plan to make our methodology applicable to

time-varying optimal policies for heterogeneous response of agents to aggregate shocks.
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Optimal Government Policies

in Models with Heterogeneous Agents

Radim Boháček and Michal Kejak
CERGE-EI

A Appendix: Analysis of the Borrowing Constrained

Agents

In general, for all z ∈ Z there exists a current minimal accumulated asset level k(z) above
which agents are not borrowing constrained (see Figure A.1 below for illustration). For
these agents, i.e. for those with (z, k) ∈ [Z × k, k(z)) and the next period savings h equal
to k, the Euler equation is satisfied in the form of inequality (allocations in the next period
are denoted with a superscript plus sign)

uc(c) > β
∑
z′

uc(c
′)
[
1 + y′

k
− πx(x′)x′k

]
Q(z, z′),

where

c = y − π(x) + k − k,
c′ = y′ − π(x′) + k − h(z′, k),

y′
k

= r (K) ,

x′ = x(z′, k)),

x′k = xk(z
′, k)),

implying h = k.
Taking this into account we can define the extended Euler equation operator,

F̃(h) ≡
{
F(h) for (z, k) ∈ Z × [k(z), k(z)],
h for (z, k) ∈ Z × [k, k(z)),

and thus the operator equation in the form F̃(h̃) = 0 determines the savings function with
the segment of constrained savings, h̃.
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Figure A.1: Policy functions for the next period capital stock. An example with two
productivity shocks z > z. There is an exogenous lower bound kL and an endogenous
upper bound k∗ < kH . The stationary distribution has a unique ergodic set E = [kL, k

∗].
Agents with shock z and capital stock k < k(z) are borrowing constrained.

For the sake of brevity we present here only the effect of the borrowing constrained
agents at the lowest shock, z, with the next period capital k. The stationarity of the
distribution functions implies

λ(z′, k) =

∫ k(z)

k

λ(z, k)Q(z, z′) dk +
∑
z 6=z

λ(z, h−1(z, h))Q(z, z′),

where λ(z′, k) is the mass of agents with the next period capital k and the next-period

shock z′. Let us note such amended distribution function by λ̃.
Clearly, it means that the amended distribution function has a discontinuity at λ̃(·, k)

in the sense that

λ̃(z, k) > lim
k↓k

λ̃(z, k),

for all z ∈ Z. However, since we assume here that functions are Lebesgue integrable, it
follows that ∫ k(z)

k

λ̃(z, k)dk =

∫ k(z)

k

λ(z, k)dk,

for any z ∈ Z and the distribution functions λ̃ and λ are equivalent. So we can simply
consider only the distribution function λ given by L in (11) and h given by (10).
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Figure B.1: Variations Around Optimal Tax Schedule

B Appendix: Proofs

B.1 Proof of Theorem 1

First, we derive the first order conditions for the Ramsey problem in (12), specifying the
optimal tax policy function at some period t. Define

J(ε) =

∫ x(z)

x(z)−εδx

{
L [z, x; π̃(x), π̃x(x)] + β

∑
z′

Q (z, z′) L′ [z, z′, x; π̃(x), π̃x(x)]

}
dλ(x)

+
∑

z∈Z\{z,z}

∫ x(z)

x(z)

{
L [z, x; π̃(x), π̃x(x)] + β

∑
z′

Q (z, z′) L′ [z, z′, x; π̃(x), π̃x(x)]

}
dλ(x)

+

∫ x(z)+εδx

x(z)

{
L [z, x; π̃(x), π̃x(x)] + β

∑
z′

Q (z, z′) L′ [z, z′, x; π̃(x), π̃x(x)]

}
dλ(x),

where

L [z, x; π̃(x), π̃x(x)] ≡ W [z, x; π̃(x), π̃x(x)] + µG [z, x; π̃(x), π̃x(x)] ,

L′ [z, z′, x; π̃(x), π̃x(x)] ≡ W ′ [z, z′, x; π̃(x), π̃x(x)] + µ′G ′ [z, z′, x; π̃(x), π̃x(x)] ,

dλ(x) = λ(z, k(z, x))kx(z, x)dx,

with

π̃(x) ≡ π∗(x) + εδπ(x),

π̃x(x) ≡ π∗x(x) + εδπx(x).
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The current period and next period utilities are

W [z, x; π̃(x), π̃x(x)] = u (c (z, k(z, x); π̃(x), π̃x(x))) ,

W ′[z, z′, x; π̃(x), π̃x(x)] ≡ u′(c′(z′, h(z, k(z, x); π̃(x), π̃x(x)); π̃(x), π̃x(x))),

with consumption in the current period

c (z, k(z, x); π̃(x), π̃x(x)) = k[1 + r(K)] + zw(K)− π̃(x)− h(z, k(z, x); π̃(x), π̃x(x)),

and in the next period

c′(z′, h(z, k(z, x); π̃(x), π̃x(x)); π̃(x), π̃x(x)) = h(z, k(z, x); π̃(x), π̃x(x))[1 + r(K ′)] + z′w(K ′)

−π(x(z′, h(z, k; π̃(x), π̃x(x))))− k′′.

These terms will be maximized with the side conditions (isoperimetric tasks) of balanced
budget in all periods. The two relevant budget constraints are

∑
z

∫ x(z)

x(z)

G[z, x; π̃(x), π̃x(x)] dλ(x) =
∑
z

∫ x(z)

x(z)

[π̃(x)− gy(z, k(z, x)))] dλ(x) = 0,

and in the next period,

∑
z′∈Z

∫ k
′

k′
[π(x(z′, k′))− gy(z′, k′)]λ′[z′, k′]dk′ = 0,

which is in coordinates x,∑
z

∑
z′

Q(z, z′)

∫ x

x

G ′[z, z′, x; π̃(x), π̃x(x)]dλ(x) =

∑
z

∑
z′

Q(z, z′)

∫ x

x

[π̃(x(z′, h(z, k(z, x))))− gy(z′, h(z, k(z, x)))]dλ(x) = 0.

The dependence of the bounds on the value of shocks z ∈ Z makes our problem a little
harder than the standard calculus of variations problem. However, as Theorem 1 states,
we construct the variations (the perturbation of functions from the optimum) being zero
at all (interior) bounds – see Figure B.1. Therefore, only the values of the government
policy at the boundaries of the maximal interval, π(x(z)) and π(x(z)), are free while all
other interior bounds are fixed. Then the condition for the optimal tax π

Jε (0) = lim
ε→0

dJ (ε)

dε
= 0

leads to the following first-order conditions

Jε(0) =
∑
z∈Z

∫ x(z)

x(z)

{
L̃π(z, x)δπ(x)+L̃πx(z, x)δπx(x)

}
dx−

[
L̃π(z, x)|x(z)

]
(−δx)+

[
L̃π(z, x)|x(z)

]
δx,

35



where for ι ∈ {π(x), πx(x)} we use a simplified notation L̃ι(z, x) = L̃ι [z, x; π̃∗(x), π̃∗x(x)],
and

L̃ι(z, x) ≡
[
Lι(z, x) + β

∑
z′

Q(z, z′)L′ι (z, z′, x)
]
λ (z, k(z, x)) kx(z, x).

Further, the integration by parts delivers∫ x(z)

x(z)

L̃πx (z, x) δπx(x)dx =
[
L̃πx(z, x)δπ(x)

]x(z)

x(z)
−
∫ x(z)

x(z)

d

dx
L̃πx(z, x)δπ(x)dx.

Thus we can rewrite the formula above in a more compact form as29

Jε (0) =
∑
z∈Z

∫ x(z)

x(z)

[
L̃π(z, x)− d

dx
L̃πx(z, x)

]
δπ(x)dx (B.1)

+
[
L̃πx(z, x)δπ(x)

]x(z)

x(z)
− L̃(z, x)|x(z) (−δx) + L̃(z, x)|x(z)δx.

At the free upper bound, the variation at the end-value of the policy function, δπ, can be
expressed as

δπ ≡ π (x+ δx)− π∗(x) = π(x) + π∗x(x)δx− π∗(x),

and
δπ(x) = π(x)− π∗(x).

This implies that
δπ(x) = δπ − π∗x(x)δx, (B.2)

i.e. the variation of the policy function at the upper bound can be expressed as a function
of the variation at the end-value of policy function, δπ, and the variation at the end-value
of the taxable activity value, δx.

At the equality constrained extreme endpoint x(z) the upper bound for capital, k, is
endogenous and thus implicitly given by the saving function, k = h

(
z, k; π(x), πx(x)

)
. The

total variance differential is

δk
[
hk(z, k)− 1

]
+ hπ(z, k)δπ = 0

and thus
δk = [1− hk(z, k)]−1hπ(z, k)δπ. (B.3)

As x = x[z, k(z; π(x), πx(x))], we determine the variation

δx = xk(z, k(z))δk,

where we can further substitute for δk from (B.3)

δx = xk(z, k)ωπδπ, (B.4)

29Since we are looking for the optimal tax policy π the boundaries x(z) and x (z) are fixed for all z ∈ Z
including z and z, [W(z, x)δπ(x)]

x(z)
x(z) = 0.
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where

ωπ ≡
δk

δπ
=

hπ(z, k)

1− hk
(
z, k
) . (B.5)

We can similarly specify the variation of the lower bound of the policy function,

δπ(x) = −δπ + π∗x(x)δx. (B.6)

In the case when the lower bound is endogenous, we can analogously derive the lower bound
first-order condition in the following way. At the equality constrained endpoint x(z) the
lower bound for capital, k, is endogenous and implicitly given by the saving function,
k′ = h(z, k; π(x), πx(x)). The total variance differential is

δk′ [hk(z, k)− 1] + hπ(z, k)δπ = 0

and thus
δk′ = [1− hk(z, k)]−1hπ(z, k)δπ. (B.7)

As x = x(z, k(z; π(x), πx(x))), we determine the variation

δx = xk[z, k(z)]δk,

where we substitute for δk from (B.7)

δx = xk(z, k)ωπδπ, (B.8)

where

ωπ ≡
δk

δπ
=

hπ(z, k)

1− hk(z, k)
. (B.9)

Going back to (B.1) and using (B.2) and (B.6) we obtain

Jε(0) =
∑
z∈Z

∫ x(z)

x(z)

{[
L̃π(z, x)− d

dx
L̃πx(z, x)

]
δπ(x)

}
dx (B.10)

+ L̃πx(z, x)|x(z)δπ −
[
πx(x)L̃πx(z, x)− L̃(z, x)

]
x(z)

δx

+ L̃πx(z, x)|x(z)δπ −
[
πx(x)L̃πx(z, x)− L̃(z, x)

]
x(z)

δx.

If both the upper and the lower bound are endogenous and therefore equality con-
strained, δx and δx, are not independent and we need to use (B.8) to obtain

Jε (0) =
∑
z∈Z

∫ x(z)

x(z)

{[
L̃π(z, x)− d

dx
L̃πx(z, x)

]
δπ(x)

}
dx (B.11)

+ L̃πx(z, x)|x(z)δπ +
[
L̃(z, x)− πx(x)L̃πx(z, x)

]
x(z)

xkωπδπ

+ L̃πx(z, x)|x(z)δπ +
[
L̃(z, x)− πx(x)L̃πx(z, x)

]
x(z)

xkωπδπ.
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Finally, from (B.11) we get

δJ =
∑
z∈Z

∫ x(z)

x(z)

{[
L̃π(z, x)− d

dx
L̃(z, x)

]
δπ(x)

}
dx

+
{

L̃πx (z, x) |x(z) +
[
L̃(z, x)− πx(x)L̃πx(z, x)

]
x(z)

xkωπ

}
δπ

+
{

L̃πx (z, x) |x(z) +
[
L̃(z, x)− πx(x)L̃πx(z, x)

]
x(z)

xkωπ

}
δπ.

Now, in order to get first-order conditions we assign δJ = 0. Since the first two terms
have to be zero for any δπ(x) for all x, and the other two terms have to be zero for any δπ
and δπ, respectively, we have ∑

z∈Z

[
L̃π(z, x)− d

dx
L̃πx(z, x)

]
= 0, (B.12)

L̃(z, x)|x(z) +

[
1

xkωπ
− πx(x)

]
L̃πx (z, x) |x(z) = 0,

L̃πx(z, x)|x(z) +

[
1

xkωπ
− πx(x)

]
L̃πx(z, x)|x(z) = 0,

and [
δx

δπ

]−1

=
1

xkωπ
.

In case that the lower bound, k(z) is exogenous, we obtain

Jε (0) =
∑
z∈Z

∫ x(z)

x(z)

[
L̃π(z, x)− d

dx
L̃πx(z, x)

]
δπ(x)dx (B.13)

+L̃πx(z, x)|x(z)δπ

+L̃πx(z, x)|x(z)δπ +
[
L̃(z, x)− πx(x)L̃πx(z, x)

]
x(z)

xkωπδπ.

The first-order conditions are ∑
z∈Z

[
L̃π(z, x)− d

dx
L̃πx(z, x)

]
= 0, (B.14)

L̃πx(z, x)|x(z) = 0,

L̃πx(z, x)|x(z) +

[
1

xkωπ
− πx(x)

]
L̃πx(z, x)|x(z) = 0.

Since we are interested in the limiting tax policy function π ≡ limt→∞ πt, we need to
impose that the derived first-order conditions in (B.14) are at a steady state related to π,
i.e. K = K ′. Then clearly the derived first-order conditions are the same as in Theorem
1. For the case with the endogenous lower bound the first-order conditions are given by
(B.12). Q.E.D.
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B.1.1 Definition of Terms in Theorem 1

For the definition of terms in Theorem 1 recall that

L̃ι(z, x) =
[
Lι(z, x) + β

∑
z′

Q(z, z′)L′ι (z, z′, x)
]
λ (z, k(z, x)) kx(z, x),

where

Lι(z, x) = Wι(z, x) + µGι(z, x),

L′ι(z, z
′, x) = W ′ι(z, z′, x) + µ′G ′ι(z, z′, x),

where ι ∈ {π(x), πx(x)} and µ and µ′ be Lagrangian multipliers for side conditions.
We can express the Euler-Lagrange equation evaluated at the limiting πt → π∗ at the

steady state as (omitting (z, x) and (z, z′, x))∑
z

{(
Wπ + µGπ + β

∑
z′

Q(z, z′)
(
W ′π + µ′G ′π

))
λkx −

d

dx

[(
Wπx + µGπx + β

∑
z′

Q(z, z′)
(
W ′πx + µ′G ′πx

))
λkx

]}
= 0,

which is again in the more compact formulation,∑
z

{(
Lπ + β

∑
z′

Q(z, z′)L′π

)
λkx −

d

dx

[(
Lπx + β

∑
z′

Q(z, z′)L′πx

)
λkx

]}
= 0,

with

d

dx

[(
Lπx + β

∑
z′

Q(z, z′)L′πx

)
λkx

]
=

(
d

dx
Lπx + β

∑
z′

Q (z, z′)
d

dx
L′πx

)
λkx +

(
Lπx + β

∑
z′

Q (z, z′) L′πx

)
(λxkx + λkxx) .

To determine individual terms, recall that in the full notation

W [z, x; π̃(x), π̃x(x)] = u (c (z, k(z, x); π̃(x), π̃x(x))) ,

W ′[z, z′, x; π̃(x), π̃x(x)] ≡ u′(c′(z′, h(z, k(z, x); π̃(x), π̃x(x)); π̃(x), π̃x(x))).
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with

c(z, k(z, x); π̃(x), π̃x(x)) = y(z, k(z, x))− π̃(x) + k(z, x)

− h(z, k(z, x); π̃(x), π̃x(x)),

y(z, k(z, x)) = r (K) k(z, x) + w (K) z,

c′(z′, h(z, k(z, x); π̃(x), π̃x(x)); π̃(x), π̃x(x)) = y′(z′, h(z, k(z, x); π̃(x), π̃x(x)))

−π̃(x′ (z′, h (z, k; π(x), πx(x))))

+h(z, k(z, x); π̃(x), π̃x(x))− k′′,
y′(z′, h(z, k(z, x); π̃(x), π̃x(x))) = r(K ′)h(z, k(z, x); π̃(x), π̃x(x)) + w(K ′)z′,

where π̃(x) ≡ π∗(x) + εδπ(x), and π̃x(x) ≡ π∗x(x) + εδπx(x).
To simplify notation we will omit the obvious arguments. Thus at the limit

Wπ(z, x)δπ(x) = lim
ε→0

dW [z, x; π̃(x), π̃x(x)]

dε
,

for ι ∈ {π(x), πx(x)},

Wι = uccι,

W ′ι = uc [1 + r(K ′)− π̃x(x′)x′k]hι +

∫
ucψ(z, z′, x)hι,

cπ = −1− hπ,
cπx = −hπx ,

ψ(z, z′, x) = hrk(K
′) + z′wk(K

′).

The sensitivity function of the savings policy hπ is given by Lemma 2. Further,

Gπ = 1,

Gπx = 0,

G ′ι = −
∫
gψ(z, z′, x)hi + ξ(z, z′, x)hi,

ξ(z, z′, x) = πx(x
′)x′k − gr.

For the equation

d

dx
Wπx(z, x) = Wπxπx(z, x)π̃xx(x) +Wπxπ(z, x)π̃x(x) +Wπxx(z, x),

d

dx
W ′πx(z, z′, x) = W ′πxπx(z, z′, x)π̃xx(x) +W ′πxπ(z, z′, x)π̃x(x) +W ′πxx(z, z′, x),

we obtain, for ι ∈ {π(x), πx(x)},

Wπxι(z, x) = uccπxι + ucccπxcι,

Wπxx(z, x) = uccπxx + ucccπxcx,
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W ′πxι(z, z′, x) = [uccc
′
ιR
′ + ucR

′
ι]hπx + ucRhπxι +

∫ {
[uccc

′
ιψ + ucψι]hπx + ucψhπxι

}
,

W ′πxx(z, z′, x) = [uccc
′
xR
′ + ucR

′
x]hπx + ucRhπxkkx + u′cψhπx ,

with

cπxι = −hπxι,
cπxx = −hπxkkx
cx = [1 + r (K)− hk] kx − π̃x(x),

c′ι = hιR + ψKι,

c′x = [1 + r(K ′)− π̃x(x′)x′k]hkkx.
R = 1 + r(K ′)− π̃x(x′)x′k,
Rι = rK(K ′)K ′ι −

[
π̃xx(x

′)(x′2k ) + π̃x(x
′)x′kk

]
(hι)

2,

Rx = −
[
π̃xx(x

′)
(
x′2k
)

+ π̃x(x
′)x′kk

]
hkkx,

K ′ι =
∑
z

∫
hιλdk,

ψι = hιr(K
′) + [hrKK(K ′) + z′wKK(K ′)]K ′ι.

According to (14),

d

dx
Gπx(z, x) = 0,

d

dx
G ′πx(z, z′, x) = G ′πxπx(z, z′, x)π̃xx(x) + G ′πxπ(z, z′, x)π̃x(x) + G ′πxx(z, z′, x),

G ′πxι(z, z′, x) = −
∫
g [ψιhπx − ψhπxι] + ξιhπx + ξhπxι,

G ′πxx(z, z′, x) = −gψhπx + ξxhπx + ξhπxkkx,

where

ξι =
[
π̃xx(x

′)(x′k)
2 + π̃x(x

′)x′kk
]
hι − gr(K ′)K ′ι,

ξx =
[
π̃xx(x

′)(x′k)
2 + π̃x(x

′)x′kk
]
hkkx.

B.2 The Euler-Lagrange Equation for a Flat-Tax Schedule

If the Euler-Lagrange equation (19) were constrained to be a flat tax rate τ . Without π(x)
there is no need for the calculus of variation and we can take just simple derivatives with
respect to τ . Since the tax is not a function of x the term d/dx will disappear from the
equation. The boundary transversality conditions for π do not exist and the Euler-Lagrange
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equation holds at inequality,∑
z

{[
− uc(c) + β

∑
z′

Q(z, z′)uc(c
′)[1 + r − τx′k]

]
h∗π (B.15)

−uc(c) + µ

+β
∑
z′

Q(z, z′)

(∫
ψ(z, z′, x)

[
uc(c

′)− µg
]
h∗τλ

∗(z, k(z, x))kx(z, x)dx

+µξ(z, z′, x)h∗τ − uc(c′)x′
)}

λ∗(z, k(z, x))kx(z, x)dx ≤ 0,

with ξ(z, z′, x) = τxk(z
′, h∗(z, k(z, x)))− gr(K∗). The return on the next period capital in

the Euler-Lagrange equation is [1 + r − τx′k].

B.3 Proof of Theorem 2

First, we need to prove that the second-order sufficient Legendre condition for a max-
imum in the optimal tax schedule problem has the form

∑
z∈Z Lπxπx(z, x) < 0 for all

x ∈ [x(z), x(z)] . See Luenberger (1969), Ok (2007) or Gelfand and Fomin (2000) as stan-
dard references.

Applying the second-order Taylor expansion of J ,

J (ε) = J (0) + Jε (0) ε+ Jεε (0) ε2 + o
(
ε2
)
,

we obtain

Jεε(0) =
1

2

∑
z∈Z

∫ x(z)

x(z)

{
Lππ(z, x)[δπ(x)]2 + 2Lππx(z, x)δπ(x)δπx(x) + Lπxπx(z, x)[δπx(x)]2

}
dx,

where
L(z, x) ≡

[
L(z, x) + β

∑
z′

Q(z, z′)L′(z, z′, x)
]
λ(z, k(z, x))kx(z, x).

The second term is∑
z∈Z

∫ x(z)

x(z)

2Lππx(z, x)δπ(x)δπx(x) =
∑
z∈Z

∫ x(z)

x(z)

Lππx(z, x)
d

dx
[δπ(x)]2

= −
∑
z∈Z

∫ x(z)

x(z)

d

dx
Lππx(z, x) [δπ(x)]2 .

The Taylor expansion can be expressed as

Jεε (0) =
∑
z∈Z

∫ x(z)

x(z)

{
P (z, x) [δπx(x)]2 +Q(z, x) [δπ(x)]2

}
dx, (B.16)
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where

P (z, x) ≡ 1

2
Lπxπx(z, x),

Q(z, x) ≡ 1

2

[
Lππ(z, x)− d

dx
Lππx(z, x)

]
.

If π is a maximum then for all perturbations δπ the quantity Jεε(0) must be negative.
If we consider a family of perturbations δπε parameterized by a small ε > 0, then∑

z∈Z
∫ x(z)

x(z)
P (z, x) [δπx(x)]2 dx is not bounded as ε → 0 due to δπx which is of order 1/ε.

On the other hand, all other terms in (B.16) containing δπ are bounded and, therefore,

dominated by
∑

z∈Z
∫ x(z)

x(z)
P (z, x) [δπx (x)]2 dx. This implies that the necessary condition

for a maximum is the so called Legendre condition∑
z∈Z

Lπxπx(z, x) < 0 for all x ∈ [x(z), x(z)] .

Next we need to prove that this condition is satisfied for our Calculus of Variations
Ramsey Problem given in Definition 3. We show that the second-order sufficient condition
is satisfied for any shape of the policy schedule π. The definition of L=W+µG gives us
Lπxπx =Wπxπx + µGπxπx . The expression for W in (12) leads to

Lπx =
(
β
∑
z′

Q(z, z′) [u′c(c
′)− µg]ψ(z, z′, x)K ′πx + µ [πx(x

′)x′k − gr(K ′)]hπx
)
λkx,

and

Lπxπx =
{
β
∑
z′

Q(z, z′){ucc(c′)c′πxψK ′πx + u′c(c
′)[ψπxK

′
πx + ψK ′πx ]

+µ{[(πxx(x′)(x′k)2 + πx(x
′)x′kk)hπx − gr(K ′)K ′πx ]hπx

+[πx(x
′)x′k − gr(K ′)]hπxπx − g[ψπxK

′
πx + ψK ′πxπx ]}}

}
λ(z, k(z, x))kx(z, x).

When we consider the second and higher order terms negligible, the above equation reduces
to the following condition

Lπxπx = β
∑
z′

Q(z, z′)
{
ucc(c

′)ψ(z, z′, x)K ′πxc
′
πx+ (B.17)

µ
[
(πxx(x

′)(x′k)
2 + πx(x

′)x′kk)hπx − gr(K ′)K ′πx
]
hπx
}
λkx,

where the first term is clearly negative due to u′cc(c) < 0. For persistent idiosyncratic
shocks at the upper bound ψ(z, z, x(z)) < 0 and c′πx(z, x(z)) > 0 (note that cπx = −hπx).
Using K ′πx < 0, the first term is negative.

The sign of the second term follows from the sensitivity function with respect to the
tax schedule derivative hπx at (z, x(z)) from the functional equation given by the Frechet
derivative of the Euler equation operator Fπ. We consider what is the effect on the next-
period capital function h when πx shifts marginally. The marginal shift of πx lowers savings,
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hπx(z, x(z)) < 0. The first term inside the square brackets on the second line is negative.
As K ′πx < 0 the second term is positive and much smaller than the first term due to
r(K ′)� 1. Since µ < 0 and hπx < 0 the whole term on the second line is negative and the
whole expression Lπxπx < 0. Considering the other boundary point at the lower bound,
where ψ(z, z, x(z)) > 0 and c′πx < 0, the first term in (B.17) is again negative. Since x′kk
is close to zero (in the case of total income x′kk = 0) the first term on the second line is
negative even when πx < 0, and Lπxπx < 0. Therefore, Lπxπx(z, k) < 0 for each z ∈ Z and
k ∈ [k(z), k(z)], thus

∑
z∈Z Lπxπx(z, k) < 0 for each k ∈ [k(z), k(z)].

Second, we need to prove that there are no conjugate points on the interval [x(z), x (z)).
Following Liberzon (2011) and considering only the second-order terms, equation (B.16)
can be written as ∫ b

a

{
R(x) [δπ(x)]2 + S(x) [δπx(x)]2

}
dx,

where

R(x) ≡
∑
z∈Z

Q(z, x) =
1

2

∑
z∈Z

[
Lππ(z, x)− d

dx
Lππx(z, x)

]
,

S(x) ≡
∑
z∈Z

P (z, x) =
1

2

∑
z∈Z

Lπxπx(z, x),

with a ≡ x(z) and b ≡ x(z).
For every differentiable function w = w(x) we know that

0 =
[
wδπ2

]b
a

=

∫ b

a

d

dx

(
wδπ2

)
dx =

∫ b

a

{
wxδπ

2 + 2wδπδπx
}
dx.

As δπ(a) = δπ (b) = 0,∫ b

a

{
R(x) [δπ(x)]2 + S(x) [δπx(x)]2

}
dx =

∫ b

a

{
[R(x) + wx(x)] [δπ(x)]2

+2w(x)δπ(x)δπx(x) + S(x) [δπx(x)]2
}
dx.

Finding a w to make the integrand on the right-hand side into a perfect square means that

S (R + wx) = w2, (B.18)

which is a quadratic differential equation for the unknown function w∫ b

a

S(x)

[
w(x)

S(x)
δπ(x) + δπx(x)

]2

dx,

with S(x) < 0. Excluding the conjugate points is equivalent to ensure the existence of a
solution to equation (B.18) on the whole interval [a, b] . The first step is to transform the
quadratic differential equation (B.18) into a linear second-order differential equation using
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a substitution

w(x) = −S(x)vx(x)

v(x)
, (B.19)

where v is a new unknown twice differentiable function. In this way, equation (B.18)
transforms into

S

(
R−

d
dx

(Svx) v − S (vx)
2

v2

)
=
S2 (vx)

2

v2
.

Multiplying both sides by v (nonzero) and dividing by S (negative) yields a Jacobi equation

Rv =
d

dx
(Svx) . (B.20)

Now we need to prove that any solution v to the Jacobi equation does not vanish anywhere
on [a, b] since then the desired solution w to the original Ricatti equation (B.18) is given
by equation (B.19). Under the condition that R is close to zero in comparison to S (results
will be qualitatively the same if R is bounded and small relative to S), equation (B.20)
simplifies to d/dx (Svx) = 0, implying that Sv′ = A where A is a constant, and

v(x) =

∫ x

a

A

S(t)
dt.

As function v is arbitrary, we can assume initial conditions v (a) = 0 and vx(a) = 1. Using
the condition vx (a) = 1, we have S(a) = A and

v(x) =

∫ x

a

S(a)

S(t)
dt.

Now we need to analyze S(t) for t ∈ [a, b] and show that it is bounded from below and
above, i.e.

0 > −S ≥ −S(t) ≥ −S > −∞. (B.21)

From (B.17)

S(x) =
1

2
β
∑
z′

Q(z, z′)
{
ucc(c

′)ψ(z, z′, x)K ′πxc
′
πx+ (B.22)

µ
[
(πxx(x

′)(x′k)
2 + πx(x

′)x′kk)hπx − gr(K ′)K ′πx
]
hπx
}
λkx.

Consider first the terms with consumption. Using the Regularity Condition, the lowest
value of consumption is when a household is borrowing constrained at k = 0 with total
income c = (1− ε)wz for any 0 < ε < 1. Clearly, consumption cannot be larger than
the maximum income equal to c = w(K)z + r(K)k. Thus, 0 < c ≤ c ≤ c < ∞ and
−∞ < ucc(c) ≤ ucc(c) ≤ ucc(c) < 0. All other terms in the formula are clearly bounded.
Thus, S given by (B.22) is bounded as in (B.21) and

v(x) =

∫ x

a

S(a)

S(t)
dt ≥

∫ x

a

S(a)

S
dt =

S(a)

S
(x− a) > 0 for all x > a.
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Therefore, there are no conjugate points to a on the interval [a, b] and the first-order
conditions for the optimal income tax schedule given by the Euler-Lagrange equation are
also the sufficiency conditions and the obtained solution is a maximum. Q.E.D.

B.4 Proof of Lemma 2

The Euler equation operator with the variation π̃(x) ≡ π(x) + εδπ(x) is

F(h)(z, k; π̃(x), π̃x(x)) ≡ uc(c(z, k; π̃(x), π̃x(x)))−
β
∑
z′

uc(c(z
′, h(z, k; π̃(x), π̃x(x)); π̃(x), π̃x(x)))R(z′, h(z, k; π̃(x), π̃x(x)); π̃(x), π̃x(x))Q(z, z′),

and

Fπ(z, k)δπ = lim
ε→0

dF [z, k; π̃(x), π̃x(x)]

dε
.

Using abbreviated notation x = x(z, k), c = c(z, k), h = h(z, k), h′ = h(z′, h), x′ = x(z′, h),
y′ = y(z′, h), c′ = c(z′, h), and R′ = R (z′, h),

Fπ(z, k) = ucc(c)cπ − β
∑
z′

Q(z, z′) {ucc(c′)c′πR′ + uc(c
′)R′π} = 0,

where

c = y − π̃(x) + k − h,
y = rk + wz,

y′ = r(K ′)h+ w(K ′)z′,

c′ = y′ − π(x′) + h− h′,
R′ = 1 + r(K ′)− π̃x(x′)x′k.

Terms for Fπ are

cπ = −1− hπ,
c′π = [1 + r(K ′)]hπ + [rk(K

′)h+ wk(K
′)z′]K ′π,

R′π = rk(K
′)K ′π − Πk(x

′)hπ,

with

Π(x′) ≡ π̃x(x
′)x′k

Πk(x
′) = π̃xx(x

′)(x′k)
2 + π̃x(x

′)x′kk.

For

Fπx(z, k) = ucc(c)cπx − β
∑
z′

Q(z, z′)
{
ucc(c

′)c′πxR
′ + uc(c

′)R′πx
}

= 0,
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the terms are

cπx = −hπx ,
c′πx = [1 + r(K ′)− Π(x′)]hπx + [rk(K

′)h+ wk(K
′)z′]K ′πx ,

R′πx = rk(K
′)K ′πx − Πk(x

′)hπx .

For

Fπxπx(z, k) = uccc(c)c
2
πx + ucc(c)cπxπx

−β
∑
z′

Q(z, z′)
{[
uccc(c

′)[c′πx ]2 + ucc(c
′)c′πxπx

]
R′ + 2ucc(c

′)c′πxR
′
πx + uc(c

′)R′πxπx
}

= 0,

we use terms

cπxπx = −hπxπx ,
c′πxπx = [1 + r(K ′)− Π(x′)]hπxπx + [rk(K

′)h+ wk(K
′)z′]K ′πxπx

+
[
rKK(K ′)K ′πx − Πk(x

′)hπx
]
hπx

+
[
rk(K

′)hπx + (rKK(K ′)h+ wKK(K ′)z′)K ′πx
]
K ′πx ,

R′πxπx = rKK(K ′)K ′πx + rk(K
′)K ′πxπx − Πkk(x

′)(hπx)2 − Πk(x
′)hπxπx .

Finally,

Fπxπ(z, k) = uccc(c)cπxcπ + ucc(c)cπxπ − β
∑
z′

Q(z, z′)
{[
uccc(c

′)c′πxc
′
π + ucc(c

′)c′πxπ
]
R′

+ ucc(c
′)
[
c′πxR

′
π + c′πR

′
πx

]
+ uc(c

′)R′πxπ
}

= 0,

with

cπxπ = −hπxπ,
c′πxπ = [1 + r(K ′)− Π(x′)]hπxπ + [rk(K

′)h+ wk(K
′)z′]K ′πxπ

+ [rKK(K ′)K ′π − Πk(x
′)hπ]hπx

+ [rk(K
′)hπ + (rKK(K)h+ wKK(K ′)z′)K ′π]K ′πx

R′πxπ = rKK(K ′)K ′π + rk(K
′)K ′πxπ − Πkk(x

′)hπhπx − Πk(x
′)hπxπ,

and
Πkk(x

′) = π̃xxx(x
′)(x′k)

3 + 3π̃xx(x
′)x′kx

′
kk + π̃x(x

′)x′kkk.

Q.E.D.

B.5 Proof of Theorem 3

We need to show that the first order approach to each agent’s maximization problem
is valid. First, agents maximize over a quasi-convex set: Ψ = {x ∈ B : 0 ≤ x ≤
ϕ(k, z) for all (k, z) ∈ B × Z}. If the function ϕ is increasing and quasi-concave, then
the set Ψ is quasi-convex. Further, we need to satisfy Assumptions 18.1 in Stokey, Lucas,
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and Prescott (1989), particularly that (i) β ∈ (0, 1); (ii) utility function u : R+ → R is
twice continuously differentiable, strictly increasing and strictly concave function; (iii) for
some k̄(z) > 0, ϕ(k, z)−k is strictly positive on [0, k̄(z)) and strictly negative for k > k̄(z),
where the value k̄, the maximum sustainable capital stock out of after-tax income for any
agent, is defined as k̄ = max{k̄(z1), . . . , k̄(zJ)}; and, (iv) given the tax-schedule function
the right-hand side of the Euler equation is strictly positive

β
∑
z′

uc(ϕ(h(k, z), z′)− h(h(k, z), z′))ϕk(h(k, z), z′)Q(z, z′) > 0,

where
ϕk(h(k, z), z′)Q(z, z′) = 1 + r − τy(y(h(k, z), z′))r.

It can be easily checked that the assumptions (i)-(iii) are satisfied from our previous
assumptions and the model. The assumption (iv) follows directly from the fact that ϕ is
increasing in k, i.e. ϕk > 0.

The other assumptions needed for proving the existence of a stationary recursive com-
petitive equilibrium (see Assumption 18.2 in Stokey, Lucas, and Prescott (1989)) are sat-
isfied : (i) the equilibrium marginal return on capital for any k ∈ B is finite (in our case
the interest rate r); and (ii) that limc→0 uc(c) =∞.

Then to prove the Schauder’s Theorem, let C(B,Z) be the set of continuous bounded
functions h : B × Z → B and define a subset F = {h ∈ C(B,Z)} where the function h
satisfies 0 ≤ h(k, z) ≤ ϕ(k, z), all (k, z) ∈ B×Z, and h and ϕ−h are nondecreasing. Note
that B × Z is a bounded subset of R2 and that the family of functions F is nonempty,
closed, bounded, and convex. Define an operator T on F ,

uc(ϕ(k, z)− (Th)(k, z)) = β
∑
z′

uc(ϕ((Th)(k, z), z′)− h[(Th)(k, z), z′])

· [(1 + r − τy(y((Th)(k, z), z′))r]Q(z, z′).

Then it is easy to prove that T is well defined, continuous and that T : F → F . From the
conditions on function h and finite return on capital, it follows that F is an equicontinuous
family. That the operator T has a fixed point in F follows from the Schauder’s Theorem
(see e.g. Theorem 17.4 in Stokey, Lucas, and Prescott (1989)).

The existence of the stationary recursive competitive equilibrium is standard from the
monotonicity, Feller and mixing property of Q and the non-decreasing policy functions (see
Chapter 12 in Stokey, Lucas, and Prescott (1989)). Q.E.D.
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C Appendix: The Least Squares Projection Method

The optimal income tax policy, π, is a solution of the following system of operator equations:
1. FOC for π given by the Euler-Lagrange equation in (16);
2. the Euler equation (10) capturing the individual optimal behavior h;
3. five operator equations (20)-(21) for F-derivatives of h based on the Euler equation,
hπ, hπx , hK , hπxπx , and hπxπ; and

4. the operator equation for distribution function, λ, in (11).
In order to solve the problem numerically, we first approximate all the unknown func-

tions by combinations of polynomials from a polynomial base. Approximated solutions are
specified by unknown parameters transforming the original infinitely dimensional problem
into a finite dimensional one. After substituting the approximated functions into the orig-
inal operator equations we construct the residual equations. Ideally, the residual functions
should be uniformly equal to zero. In practical situations, however, this is not achiev-
able and we limit the problem to a finite number of conditions, the so called projections,
whose satisfaction guarantees a reasonably good approximation. There are many possibil-
ities how to define the projections.30 We have chosen the least squares projection method
for its good convergence properties and advantage in solving systems of nonlinear operator
equations. We search for parameters approximating the functional equations that minimize
the squared residual functions.

As we specified above, in the system of operator equations given by (10), (11), (16),
and (20)-(21), there are seven unknown classes of functions {π, h, hπ, hπx , hπxπx , hπxπ, λ}.
Since we assume that the shocks are discrete, z ∈ Z = {z1, z2, . . . , zJ} and J > 1,
we define the following family of policy and distribution functions, and their derivatives
{hi(k), λi(k), hiπ(k), hiπx(k), hiπxπx(k), hiπxπ(k)}Ji=1, for each shock value z1, z2, . . . , zJ . We in-
terpret the policy function hi as the next-period capital function of an agent who was hit
by a shock level zi. Analogously, the distribution function λi is the distribution of agents
with the shock zi, etc. Similarly, we assign the Euler and distribution function operators
to every shock level, F i and Li, respectively. We approximate all unknown functions by
the orthogonal Chebyshev polynomial base {Ti(x)}∞i=0 defined for x ∈ [−1, 1].

As we have to define our approximation on a finite interval, we set the highest capital

level to a value k̂, greater than the endogenous upper bound on the stationary distribu-

tion. Let the interval of approximation be [k, k̂] and the degrees of approximation for
{hi(k), hiπ(k), hiπx(k), hiπxπx(k), hiπxπ(k), λi(k), π(x)} be M,Mπ,Mπx ,Mπxπx ,Mπxπ, N, P ≥ 2,
respectively.31

30For an excellent survey and description of these methods see Chapter 11 in Judd (1998). Reiter (2009)
uses perturbations to solve for aggregate dynamics around a steady-state equilibrium. Evans (2017) uses the
perturbation theory with a truncated Taylor expansion to study the role of capital taxation in an economy
with uninsurable investment risk. Golosov, Tsyvinski, and Werquin (2014) use variational approach for
their analysis of optimal tax systems.

31The details on Chebyshev polynomials can be found in Judd (1992), Judd (1998) or in any book on
numerical mathematics. The linear transformation ξ : [k, k] → [−1, 1] is necessary if we want to use the
Chebyshev polynomials on the proper domain. It is straightforward to show that ξ(k) = 2(k−k)/(k−k)−1.

49



Thus, we obtain

ĥim(k; aim) ≡
Mm∑
j=1

aim,jφj(k), λ̂i(k; bi) ≡
N∑
j=1

bijφj(k),

with i ∈ {1, 2, ..., J} and m ∈ {∅, π, πx, πxπx, πxπ}, and π̂(x; c) ≡ ∑P
j=1 cjφj(x), for any

k ∈ [k, k] and x ∈ [r(K)k + w(K)z, r(K)k + w(K)z], where φj(k) ≡ Tj−1(ξ(k)), and a’s,
b’s, and c’s are the unknown parameters.

Now we have to define residual functions as approximations to the original operator
functions (10), (11), (16), and (20)-(21). Substituting the above approximations for the
unknown functions,

RL̃(x; p) =
∑
zj

[
L̃π

(
ĥ, λ̂, π̂

)
+

d

dx
L̃πx

(
ĥ, λ̂, π̂

)]
, (C.1)

RF
i

m (k; p) = F im(ĥ, π̂), (C.2)

RL
i

(k; p) = Li(ĥ, λ̂), (C.3)

with i = 1, . . . , J and m ∈ {∅, π, πx, πxπx, πxπ} where

p ≡ (a, aπ, aπx , aπxπx , aπxπ,b, c),

am ≡ (a1
m, a

2
m, ..., a

J
m),

b ≡ (b1, b2, ..., bJ),

and p is of a size S = J × (
∑

m(Mm +N)) + P ,

ĥ ≡ (ĥ, ĥπ, ĥπx , ĥπxπx , ĥπxπ),

ĥm ≡ (ĥ1
m, ..., ĥ

J
m),

λ̂ ≡ (λ̂1, ..., λ̂J),

for any i = 1, . . . , J .
The least squares projection method searches for a vector of parameters p that mini-

mizes the sum of weighted residuals,

J∑
i=1

∫ k̂

k

{∑
m

[RF
i

m (k; p)]2 + [RL
i

(k; p)]2
}
w(k)dk +

∫ k̂

k

[RL̃(x(k); p)]2w(k)dk,

with the weighting function given by w(k) ≡
(

1−
(

2k−k
k̂−k

)2
)−1/2

and i = 1, . . . , J . After

approximating the integrals by the Gauss-Chebyshev quadrature, we obtain a minimization
problem

min
p∈RS

∑
ǩ

{ J∑
i=1

∑
m

(
[RF

i

m (k; p)]2
)

+ [RL
i

(k; p)]2 + [RL̃(x(k); p)]2
}
,
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with ǩ’s being the zeros of the polynomial φ of a degree greater than the biggest degree of
the polynomial approximations, i.e. max{M,Mπ,Mπx ,MK ,Mπxπx ,Mπxπ, N, P}.

Since the least squares projection method sets up an optimization problem we can use
standard methods of numerical optimization, e.g. the Gauss-Newton or the Levenberg-
Marquardt methods. Again, the discussion of these methods is not the aim of our paper.
However, we found that these traditional methods did not work in our high-dimensional
problem mainly due to possible multiple local solutions. We tried several other methods
(simulated annealing or genetic algorithm with quantization, for example) and finally suc-
ceeded with a genetic algorithm with multiple populations and local search. The used
degrees of polynomial approximation for the optimal individual policy functions h, distri-
bution functions, λ, the related sensitivity functions hπ and the optimal government policy
function, π, where 4, 12, 3, 3, and 4, respectively. The residuals of the related functional
equations were of the order 10−3 or 10−4 with the exception of hπ of the order 10−2.
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D Example: Optimal Tax on Total Income

D.1 Definitions of Terms in Theorem 1

The terms from Theorem 1 for Example are those in Appendix B.1.1 together with
y(z, k(z, x)) = x, and kx(z, x) = 1/r(K).

D.2 Extra Term for Pecuniary Externality of Aggregate Capital

In our economy, the extra term in the constrained optimal allocation in Davila, Hong,
Krusell, and Rios-Rull (2012) corresponds to

∆ ≡ β
∑
z

∫ ∑
z′

uc(h(z, k), z′) [h(k, z)FKK(K) + z′FLK(K)]Q(z, z′)λ(k, z)dk.

The term FKK(K) < 0 and FLK(K) > 0. It is thus the sum of next period changes in
total income weighted by marginal utility of each agent. In a representative agent economy
∆ = 0.

The sign of ∆ depends on the persistence properties of the individual labor productiv-
ity shocks. The fraction of poor (in particular borrowing constrained) agents with high
marginal utility is the main determinant of the extra term. It is positive if a sufficient
number of poor agents have labor-intensive income and would benefit from more aggregate
capital stock. If the labor productivity shock is iid, then agents would use savings to insure
against idiosyncratic risk. Then the capital income would be relatively high and the extra
term negative.

Finally, the extra term is an aggregate effect which is the same for all agents and more
distortionary for agents with low marginal utility. This implies that changes in either
direction will be mostly implemented by the rich agents.

The Euler-Lagrange equation for the first-order condition of the constrained efficiency
problem is

−uc(c) + β
∑
z′

Q(z, z′)uc(c
′)[1 + r]

+β
∑
z

∑
z′

Q(z, z′)

∫
ψ(z, z′, x)uc(c

′)λ∗(z, k(z, x))kx(z, x)dx ≤ 0,

where the last term equal to the extra term ∆.
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D.3 Additional Distributional Effects

Table D.1: Steady State Distribution of Income and Consumption

Consumption Income
Progress. Flat Optimal Progress. Flat Optimal

1st Quintile 5.97 6.40 5.39 9.07 6.34 7.53
2nd Quintile 6.04 6.80 6.15 9.20 6.86 7.96
3rd Quintile 10.52 16.40 11.88 14.19 16.66 15.59
4th Quintile 17.68 18.60 18.42 20.92 20.91 24.09
5th Quintile 65.76 65.00 63.56 55.69 62.44 51.16

Top 10% 54.25 54.34 51.76 38.19 44.83 34.53
Top 5% 40.26 41.12 39.04 23.61 28.29 21.12
Top 1% 8.88 8.82 8.10 6.14 7.52 4.84

Note: Each entry is the percentage share by each group.

Table D.1 shows additional results on distribution of resources by quintiles and top groups
of agents in the stationary equilibrium for each economy. Table 3 in the main paper shows
that in the benchmark, high wealth dispersion economy, the optimal limiting tax schedule
reduces taxation of the persistently poor agents. As income is more equally distributed
with no major differences across the three steady states, consumption by agents in the
third and fourth quintiles increases. Agents in the top quintile still consume more than a
half of the aggregate consumption.

D.4 Transition to the Optimal Tax Schedule Steady State

Figure D.1 shows welfare gains by individual wealth and productivity shock, (k, z), where
z is either low, medium, or high as in Table 1. These individual welfare gains aggregate to
the average welfare gain from transition in Table 4.

The welfare gains and losses are much smaller on the transition from the progressive-tax
steady state than from the flat-tax steady state. Compared to the progressive tax schedule,
the optimal limiting tax schedule reduces insurance to poor agents and brings their welfare
losses. In the progressive-tax steady state, agents whose total income falls into the trough
of the U-shape optimal limiting tax schedule benefit from the reform.

In the transition from the flat-tax steady state, agents with the high idiosyncratic
shock lose from the reform while the other two types of agents benefit. The welfare gains
of agents with the low and medium productivity shocks are positive for two reasons. First,
their insurance is improved. Second, the aggregate capital stock in the optimal tax steady
state is much lower than in the flat tax steady state. This allows agents to consume
individual savings during the initial periods of transition. The bottom panel shows large
welfare gains for agents with medium and low productivity shocks. Only the high-skill
agents suffer losses as they pay much higher taxes than in the pre-reform steady state.

D.5 Different Welfare Criteria

Table D.2 exhibits detailed results for the benchmark economy illustrated by Figures 3
and 4 in the text. Each column shows a steady state in which the government discounts
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Figure D.1: Welfare gains from transition.

future by a different β̂. In all steady states agents discount future by β = 0.9303 as in the
benchmark economy.

As social discount factor grows, capital accumulation increases, together with wealth
inequality. Because inequality and lower insurance hurts more the poor agents with high
marginal utility, the steady state average welfare falls. When β̂ = 0.89 the Gini coefficient
of inequality falls to 0.485 with the top five percent of the wealth distribution owning only
13% of the capital stock. For β̂ < β, the optimal tax reform of the progressive tax steady
state is supported by the majority of the population. This is because agents can consume
the capital stock during the transition. For the same reason, the optimal tax reform of the
flat tax economy makes the majority of agents always better off. For low social discount
factors the average welfare gains are very large. When β̂ ≤ β in the flat-tax economy, only
agents with the high labor productivity are hurt by the large drop in equilibrium wages.
Gains and losses from the optimal tax schedule are calculated using the agents’ discount
factor.

D.6 Sensitivity Analysis for Different Values of σ

We analyze the optimal limiting tax for four different values of σ ∈ {0.5, 1, 2, 4}, where
σ = 2 is the benchmark value and θ = 1/σ is the intertemporal elasticity of substitution.
The discount factor is adjusted for each σ so that in the progressive tax steady state the
capital-output ratio is 3 and the equilibrium interest rate is 4 percent. All other parameters
are kept the same as in the benchmark economy.

Figure D.2 shows the optimal tax schedules and optimal marginal tax schedules for
different values of σ. For the highest degree of risk aversion the average tax rate is negative
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Table D.2: Government Discount Factor: Steady State Allocations

Optimal Tax Schedule Steady State with β̂

0.89 0.91 0.9309∗ 0.95 0.97 0.99

Steady State
Aggregate assets 2.621 2.766 3.093 3.165 3.322 3.611
Output 0.953 0.971 1.011 1.015 1.033 1.069
Capital-output ratio 2.752 2.848 3.059 3.118 3.216 3.378
Interest rate (%) 5.085 4.648 3.771 3.596 3.342 2.661

Coeff. of variation of wealth 0.848 1.076 1.501 1.534 1.680 1.907
Gini wealth 0.485 0.579 0.698 0.736 0.758 0.799
Perc. of wealth of the top 5% 0.131 0.192 0.286 0.294 0.326 0.378

Steady State Average Welfare 5.506 5.418 5.277 5.269 5.205 5.099

Transition Gains from the Progressive Tax Steady State (in %)
Average Welfare 9.890 6.267 -0.767 -1.397 -4.327 -9.785
Aggregate Component 2.140 1.120 -0.580 -0.800 -1.850 -4.000
Distributional Componen 7.588 5.090 -0.188 -0.602 -2.524 -6.026

Political Support 68.573 57.161 46.471 40.201 22.641 10.546

Transition Gains from the Flat Tax Steady State (in %)
Average Welfare 26.956 22.892 14.884 14.163 10.809 4.551
Aggregate Component 9.340 8.170 5.670 5.420 4.260 1.900
Distributional Component 16.111 13.610 8.720 8.293 6.281 2.602

Political Support 94.129 94.129 94.129 63.934 58.746 54.130

Note: Agents discount factor β = 0.9309 in all steady states.

around the median wealth. The optimal marginal tax functions are also U-shaped and
negative at low levels of income.

For the benchmark economy calibrated according to Davila, Hong, Krusell, and Rios-
Rull (2012) with a high wealth dispersion in the steady state, in Table D.3 we observe
that capital accumulation increases with higher values of σ in the flat-tax steady states
but remains almost constant in the optimal-tax steady states. Wealth inequality falls in all
steady states, but most dramatically in steady states with the optimal tax schedules. The
optimal tax schedule delivers the highest steady state average welfare level in economies
where agents are most risk-averse. The flat tax reform increases the aggregate capital
stock so much that its deaccumulation allows for a sufficient consumption stream during
the transition process: in the σ=4 economy the average welfare gain is almost 20 percent.
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E Low Wealth Dispersion Economy

In this Appendix, we also evaluate our example in Section 6 for the more traditional cali-
bration based on Aiyagari (1994). The three-state, first order Markov process of the unin-
surable idiosyncratic shock to labor productivity is estimated from the household annual
labor income process in the PSID data by a first-order autoregression with a persistence
parameter 0.6 and a volatility 0.2. The discount factor is set at β = 0.975 in order to arrive
at the capital-output ratio equal to 3.0 in the progressive-tax steady state (the equilibrium
interest rate is 4 percent).

Table E.1: Parameters of the Low Wealth Dispersion Economy

β = 0.9750 σ = 2.0 α= 0.36 δ = 0.08 g=0.189

Earnings Process (Aiyagari (1994)):

z ∈ Z = {0.780, 1.000, 1.270} Q(z, z′) =

0.660 0.270 0.070
0.280 0.440 0.280
0.070 0.270 0.660


Other parameters in Table E.1 are the same as in the benchmark economy in Section

6. This calibration of the earnings process leads to a steady state with an unrealistic, low
dispersion of wealth. In the progressive-tax steady state, the Gini coefficient of wealth is
only 0.304.
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Figure E.1: The optimal average tax rate and the optimal marginal tax rate in the low
wealth dispersion economy.

In the low wealth dispersion economy, the optimal limiting average tax schedule is also
U-shaped with an important upward shift. In Figure E.1, the average tax rate at the lowest
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Table E.2: Steady State Results: Low Wealth Dispersion Economy

Progressive Flat Optimal

τ 0.161 0.253 —

Aggregate assets 3.000 3.273 3.561
Output 1.000 1.032 1.064
Capital-output ratio 3.000 3.172 3.348
Interest rate (%) 4.000 3.352 2.751

Coeff. of variation of wealth 0.516 0.673 0.498
Gini wealth 0.304 0.389 0.290
Perc. of wealth of the top 5% 0.113 0.148 0.103

total income is 37%, decreases to a minimum of 24%, and rises to 48% at the highest level
of total income. The marginal tax rates are close to zero for low incomes and rise at higher
income levels.32

Table E.2 shows steady state outcomes of the progressive, flat, and optimal limiting
tax schedules. In this Aiyagari’s low wealth dispersion economy, the earnings process is
not very persistent, wealth inequality is low and poor agents can escape poverty easily.
This allows the optimal limiting tax schedule to focus more on the general equilibrium
price effect, increasing the aggregate capital stock by 18.7%, to a higher level than in the
flat-tax steady state. The Gini coefficient for wealth declines from 0.304 to 0.29. The
top five percent of richest agents hold only around 10 percent of all assets. As before, we
find that the extra term of Davila et al. (2012) is positive in all simulations. This implies
an overaccumulation of capital in a competitive equilibrium relative to the constrained
efficient allocation attained by a social planner.

Table E.3: Steady State Distribution of Assets and Tax Contributions

Assets Tax Contributions
Progress. Flat Optimal Progress. Flat Optimal

1st Quintile 6.08 4.28 6.29 12.46 14.51 18.76
2nd Quintile 13.28 10.58 13.70 16.13 17.32 19.04
3rd Quintile 19.13 16.82 19.58 19.48 19.71 19.41
4th Quintile 25.40 25.05 25.56 23.69 22.68 20.46
5th Quintile 36.10 43.27 34.88 28.24 25.78 22.33

Top 10% 20.27 25.68 19.21 14.89 13.54 11.50
Top 5% 11.13 14.80 10.33 7.77 7.08 5.89
Top 1% 2.54 3.77 2.34 1.66 1.54 1.23

Note: Each entry is the percentage share by each group in the low wealth dispersion economy.

The average tax rates are convex and U-shaped in income, providing incentives for
agents to concentrate around the desired aggregate capital level: The low or negative
marginal tax rates at low income levels motivate savings while the increasing rates on high
incomes deliver tax revenues for redistribution. These distributional results are illustrated
by shares of assets owned and taxes paid by different percentiles of agents in Table E.3.
In the Aiyagari economy with reduced wealth inequality and low shock persistence, the

32Again, the optimal limiting tax schedule satisfies the admissibility condition from Corollary 1.
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optimal tax schedule equalizes tax burden across agents (quintile shares between 18.8%
and 22.3%). The low wealth dispersion leads to only minor differences in asset distribution
in the top quintile of agents.

Table E.4: Steady State Distribution of Consumption and Income

Consumption Income
Progress. Flat Optimal Progress. Flat Optimal

1st Quintile 14.79 14.51 14.92 17.69 17.13 17.04
2nd Quintile 17.43 17.35 17.32 19.07 18.68 18.89
3rd Quintile 19.75 19.70 19.69 19.90 19.67 20.03
4th Quintile 22.53 22.67 22.72 20.88 20.93 21.12
5th Quintile 25.49 25.77 25.35 22.46 23.58 22.93

Top 10% 13.23 13.56 13.02 11.56 12.4 11.81
Top 5% 6.82 7.08 6.65 5.92 6.48 6.06
Top 1% 1.43 1.55 1.37 1.24 1.42 1.27

Note: Each entry is the percentage share by each group in the low wealth dispersion economy.

Otherwise, the dispersion of the stationary distribution is very low and there are no
significant differences in income or consumption shares in Table E.4.
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Figure E.2: Sensitivity of savings to changes in the tax schedule hπ in the low wealth
dispersion economy.

The different general equilibrium and redistribution effects of the Aiyagari (1994) cal-
ibration can be seen in Figure E.2. The sensitivity functions of savings to changes in the
optimal tax schedule, hπ, for three labor productivity shocks zL < zM < zH , show that in
this calibration the general equilibrium effects dominate and a small perturbation of the
optimal tax schedule induces large responses from all types of agents (compared to the
benchmark calibration). Importantly, the shape of the tax schedule increases savings of
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the poor agents with the low labor productivity shock, hπ(k, z) > 0. Naturally, at higher
wealth levels, a perturbation of the convex increasing tax schedule reduces savings.

E.1 Gains from the Optimal Limiting Tax Schedule

Table E.5 shows that the optimal tax schedule increases steady state average welfare much
less than in the benchmark calibration. In the low wealth dispersion economy, steady
state average welfare in the optimal tax steady state is 0.9% and 0.1% higher than in the
progressive and flat-tax steady state, respectively.

Table E.5: Welfare Gains (in %): Low Wealth Dispersion Economy

Progressive Flat

Steady State 0.908 0.131

Transition
Average Welfare -1.718 -1.040
Aggregate Component -1.330 -0.730
Distributional Component -0.393 -0.312

Political Support 15.494 18.397

The rest of Table E.5 shows welfare gains in terms of expected present discounted values
from an unanticipated reform in which the optimal limiting tax schedule is imposed on the
initial progressive- or flat-tax steady state. The costs incurred during the transition are
substantial.
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Figure E.3: Welfare gains from transition in the low wealth dispersion economy.
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In the Domeij and Heathcote (2004) decomposition, the aggregate component is nega-
tive due to lower consumption during the transition as agents must accumulate a higher
stock of capital. Only a small fraction of the population would be better off from the opti-
mal tax reform. Figure E.3 shows that the cost of transition falls heavily on the asset-poor
agents. In both transitions from the progressive steady state (top panel) and from the
flat tax steady state (bottom panel), the gains and losses have an inverted U-shape across
wealth. In the latter case, welfare losses can be observed for the poorest and richest agents
who face higher tax rates.

The costs accrue mostly during the initial periods of the transition during which agents
in both steady states must accumulate additional capital. Compared to the benchmark
calibration, the unanticipated optimal tax reform is welfare improving for only a small
fraction of the population around the median of the wealth distribution.

E.2 Different Welfare Criteria

In the low wealth dispersion economy, aggregate general equilibrium effects are stronger
and distributional effects weaker due to extremely low wealth inequality. Figure E.4 shows
the optimal limiting average tax rates and the optimal marginal tax rates for different
values of social discount factors β̂. As in the high wealth dispersion economy, low social
discount factor puts more weight on insurance against idiosyncratic risk and less weight on
the long-term average price effect from the aggregate capital stock accumulation. Again,
a very high social discount factor uses the U-shaped average tax schedule for long-term
saving incentives.
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Figure E.4: Optimal average and marginal tax rates for different government discount
factors in the low wealth dispersion economy.

Figure E.5 documents a very close relationship between the capital-output ratio and
wealth inequality. Both increase as social discounting β̂ rises relative to that of agents.
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Figure E.5: Capital-output ratio (left axis) and wealth inequality (right axis) for different
government discount factors in the low wealth dispersion economy.

For different levels of the government discount factor, Table E.6 reveals capital accu-
mulation effects are stronger and distributional effects weaker due to extremely low wealth
inequality. Without dissaving, there is no political support for the tax reform. Steady
state average welfare levels are similar across all cases.

The distributional effect dominates at high income levels, where it is optimal to increase
the marginal tax rates to raise as much tax revenue as possible. The average tax rate is
convex in income, as the richest households with a low marginal utility provide most of
the tax revenues. With high risk aversion or low social discount factor, the taste for
redistribution also dominates at low income levels and the marginal tax schedule increases
on the whole income distribution. When general equilibrium effects are more important
for low risk aversion or high discount factor, the marginal tax rate schedule is declining
at low income levels. First, poor agents save little relative to rich agents so the efficiency
losses are small. Second, high marginal rates at the bottom of the distribution apply to a
larger tax base and, therefore, their reduction lowers the average marginal rates.
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Table E.6: Government Discount Factor: Low Wealth Dispersion Economy

Optimal Tax Schedule Steady State with β̂

0.91 0.93 0.95 0.975∗ 0.98 0.99

Steady State
Aggregate assets 3.209 3.328 3.427 3.561 3.585 3.612
Output 1.025 1.038 1.049 1.064 1.066 1.069
Capital-output ratio 3.132 3.206 3.267 3.348 3.362 3.378
Interest rate (%) 3.493 3.236 3.028 2.751 2.715 2.661

Coeff. of variation of wealth 0.357 0.407 0.445 0.498 0.509 0.519
Gini wealth 0.205 0.234 0.258 0.290 0.295 0.301
Perc. of wealth of the top 5% 0.084 0.090 0.095 0.103 0.105 0.107

Steady State Average Welfare 1.082 1.084 1.086 1.088 1.088 1.088

Transition Gains from the Progressive Tax Steady State (in %)
Average Welfare -0.610 -0.958 -1.264 -1.718 -1.806 -1.905
Aggregate Component -0.350 -0.670 -0.950 -1.330 -1.410 -1.490
Distributional Component -0.261 -0.290 -0.317 -0.393 -0.402 -0.421

Political Support 23.792 19.496 18.788 15.494 10.991 6.133

Transition Gains from the Flat Tax Steady State (in %)
Average Welfare 0.078 -0.260 -0.576 -1.040 -1.133 -1.235
Aggregate Component 0.090 -0.030 -0.320 -0.730 -0.810 -0.890
Distributional Component -0.012 -0.230 -0.257 -0.312 -0.326 -0.348

Political Support 49.667 34.741 26.839 18.397 9.022 7.042

Note: Agents discount factor β = 0.975 in all steady states.

E.3 Sensitivity Analysis for Different Values of σ

Finally, we analyze the optimal limiting tax in the low wealth dispersion economy for four
different values of σ ∈ {0.5, 1, 2, 4}, where σ = 2 is the benchmark value and θ = 1/σ is the
intertemporal elasticity of substitution. Discount factor is adjusted for each σ so that in
the progressive tax steady state the capital-output ratio is 3 and the equilibrium interest
rate is 4 percent. All other parameters are kept the same as in the benchmark economy.
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Figure E.6: Optimal average and marginal tax rates in the low wealth dispersion economy
for different values of the risk aversion coefficient.

Figure E.6 displays the optimal average and marginal tax rates for different values of
σ in the low wealth dispersion economy. The U-shape of the optimal limiting average tax
schedule is preserved in all simulations. Similar to Imrohoroglu (1998), with higher risk
aversion, the agents have their own incentives to accumulate more capital as a buffer stock
against the idiosyncratic risk and the optimal tax schedules are less steep at low incomes
but steeper at higher incomes. The optimal marginal tax functions are increasing for high
levels of risk aversion.

Table E.7 shows the steady state allocations and transition gains of the optimal tax
reform. In general, the Aiyagari’s parameterization with low wealth dispersion is not very
sensitive to risk aversion. The optimal tax schedule increases the aggregate capital stock
more than the flat tax as the average price effect dominates the distributional effect. As a
result, inequality slightly increases with risk aversion. Steady state average welfare levels
are similar across all steady states. When transitions from the flat or the progressive
steady states to the optimal steady states are taken into account, average welfare gains are
negative for all values of risk aversion.

In general, as the government discounts future more than agents or if the latter are
more risk averse, the short-term distributional effect is more important than the long-
term, general equilibrium effect from changes in the aggregate capital stock.
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F Extensions

Labor decisions are more relevant for the poor agents while savings decisions are more
important for the wealthy agents. Park (2017) analyzes the Davila et al. (2012) economy
with endogenous human capital accumulation. The first order condition with respect to
human capital investment also has an extra term whose sign is opposite to that of savings.
Because the planner can improve welfare only by changing equilibrium prices, qualitative
results of Davila et al. (2012) do not change by introducing endogenous human capital.
However, introducing human capital decreases inequality relative to the economy with
exogenous labor.

In our paper, we assume that in each steady state the government must collect a fraction
g = 0.189 of the total output. In Heathcote and Tsujiyama (2017) the shape of the optimal
labor tax schedule is sensitive to the amount of fiscal pressure the government faces to raise
revenue. When the fiscal pressure is low, the optimal marginal tax schedule is increasing
as in the U.S. economy. As fiscal pressure grows, the marginal tax rates increase and the
tax schedule becomes U-shaped, as in Saez (2001). This means that in economies with a
higher share of government consumption the optimal limiting tax schedule might be more
U-shaped than we found in this paper.

Another possible extension would be an optimal limiting tax schedule with life-cycle
income profiles as in Golosov, Tsyvinski, and Troshkin (2011) and Farhi and Werning
(2012). Heathcote, Storesletten, and Violante (2017) find that welfare gains from allowing
the degree of tax progressivity to vary with age are very small. The optimal tax system is
U-shaped in age due to the life-cycle productivity and insurance effects.

The exogenous lower bound on savings k has important implications on savings de-
cisions of poor agents. In Heathcote (2005), the magnitude of the response of aggre-
gate variables to tax changes depends on the fraction of wealth-poor and thus potentially
borrowing-constrained agents. A combination of distortionary taxation and capital market
imperfections leads to quantitatively important departures from Ricardian equivalence: af-
ter a tax cut, the average percentage increase in consumption is almost twice as large as
the increase in investment. Intergenerational redistribution of the tax burden is the least
important source of non-neutrality.

The variational approach used in our paper is well suited for analyzing time-varying op-
timal policies that take into account heterogeneous response of agents to aggregate shocks.
Bhandari, Evans, Golosov, and Sargent (2017b) study how the Ramsey planner optimally
sets nominal interest rates, transfers and proportional labor taxes in response to aggre-
gate shocks in a New Keynesian model where agents are heterogeneous with respect to
co-movements of aggregate variables and measures of inequality. During a recession, pro-
ductivity shocks change the distribution of labor earnings or markup shocks. Optimal
fiscal and monetary tools redistribute resources towards agents who are adversely affected.
They find that this kind of redistributive hedging is quantitatively very important. Ahn,
Kaplan, Moll, Winberry, and Wolf (2017) show how inequality matters for the dynamics
of macroeconomic aggregates over the business cycle.

The shape of the optimal tax schedule is necessarily sensitive to the government’s ob-
jective function. Heathcote and Tsujiyama (2017) characterize the mapping between the
taste for redistribution in a class of Pareto weight functions and the progressivity param-
eter in Heathcote, Storesletten, and Violante (2016). When the taste for redistribution
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increases, the optimal marginal tax schedule moves from being upward sloping to becom-
ing U-shaped. For the utilitarian welfare function with equal Pareto weights, the average
welfare gain from an optimal progressive tax reform are very small. It would be straight-
forward to implement this parameterization in our model.

In Heathcote and Tsujiyama (2017), the planner maximizes a social welfare function∫
W (α; θ)U(α)dλ(α),

using Pareto weights W (α; θ) that might vary with individual productivity α. The pa-
rameter θ controls the extent to which the planner puts weight on low relative to high
productivity agents. The weight function represents the taste for redistribution,

W (α; θ) =
exp(θα)∫

exp(θα)dλ(α)
.

A positive weight θ puts more weight on the less productive agents, and vice versa for a
negative θ. The case of θ = 0 corresponds to our utilitarian welfare function. The Rawlsian
case has θ →∞ as the planner maximizes the minimum level of welfare in the economy.
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