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Abstract: Regressors often have heterogeneous effects in the social sciences, which are
usually modeled as unit-specific slopes. OLS is frequently applied to these correlated co-
efficient models. I first show that without restrictions on the relation between slopes and
regressors, OLS estimates can take any value including being negative when all individual
slopes are positive. I derive a simple formula for the bias in the OLS estimates, which depends
on the covariance of the slopes with the squared regressor. While instrumental variable meth-
ods still allow estimation of (local) average effects under the additional assumptions that the
instrument is independent of the coefficients in the first stage and reduced form equations,
the results here imply complicated biases when these assumptions fail.
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A defining characteristic of the social sciences is that the subjects under study, such as in-

dividuals, firms or countries, act in their own way, i.e. that the effects of their characteristics

differ between units of observations. Despite the likely presence of such individual-level het-

erogeneity, the vast majority of empirical studies estimates regression models with constant

coefficients. Even though it is unknown what OLS estimates unless the effects are indepen-

dent of the regressors, the estimated OLS coefficients are often interpreted as averages of the

individual effects. In this note, I show that applying OLS in the presence of heterogeneous

slopes can be severely misleading. In fact, OLS estimates can be negative even when all

individual slopes are positive. More generally, they can take any value depending on the

relationship between slopes and regressors. I derive the bias in the OLS estimates, which

depends on the covariance of the slopes with the squared regressor. The bias formula implies

that OLS estimates the average effect only when slopes are uncorrelated with the square

of the regressor. This condition is likely to be violated in many applications, e.g. because

optimizing agents select characteristics based on their effects or because there are decreasing

returns to scale. Instrumental variable methods can still be used to estimate (local) aver-

age effects, but require a similar restriction. Standard IV requires both the first stage and

the reduced form coefficients to be uncorrelated with the squared coefficients.1 The results

here imply complicated biases when these assumptions fail, suggesting that assessing their

validity should receive more attention in practice.

The standard way to analyze heterogeneity in, among others, the evaluation of social

programs is the correlated coefficient model. See e.g. Heckman and Vytlacil (2007) for

discussion and further references. In its simplest, univariate form, the correlated coefficient

model relates an outcome yi to a regressor xi linearly at the individual level, i.e.

yi = xiβi + εi (1)

1Many other methods require or invoke the stronger assumption that the instrument and the coefficients
are independent.
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εi is a standard error term that is assumed to be uncorrelated with regressors and coefficients.

For simplicity, I will assume that all variables are demeaned and thus omit the intercept.2

Figure 1
Example of Negative OLS Estimates When all Individual Slopes are Positive
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To see how heterogeneous slopes affect the observed data and hence estimates, first

consider the expectation of the outcome conditional on the regressor. In the standard model

without coefficient heterogeneity, i.e. when βi = β ∀i, the conditional expectation of y given

x is xiβ, which is linear in x. In the presence of heterogeneity, βi is a random variable as

well, so that the conditional expectation becomes E[yi|xi] = xiE[βi|xi]. Notice that this

function is non-linear in xi unless E[βi|xi] is constant in x. Unless E[βi|xi] is known, xi and

βi cannot be separated without further information such as exogenous variation in x. To

see this, note that βi =
f(xi)
xi

results in E[y|x] = f(x) for any function f(). Thus, without

any restrictions on the relation between xi and βi, coefficient heterogeneity can produce any

aggregate functional form from a model that is linear at the unit level. For example, if

βi = axi, then E[y|x] = ax2, turning the linear relationship into a quadratic function. Figure

1 shows that the observed conditional expectation (solid line) can be severely misleading:

Even though all individual slopes are positive, the slope of the conditional expectation and

hence the OLS coefficient are negative. It is obvious from Figure 1 that by moving the

2The intercept will typically be biased and individual specific intercepts may cause further bias. This
bias is well known and simple to analyze using matrix notation.
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observed points along the true causal paths (dashed lines), the OLS estimates can take any

value for a given distribution of individual slopes.

The example above raises the questions what OLS estimates when slopes are heteroge-

neous and under which conditions it still estimates an average effect. As Heckman, Schmierer

and Urzua (2010) point out, applying OLS to (1) yields the average effect of xi on yi,

β̄ = E[βi], when xi and βi are independent, which implies that E[βi|xi] is a constant. To

understand what OLS estimates more generally, consider the formula for univariate OLS

coefficients without an intercept:

E[β̂] =
E[xiyi]

V ar(xi)
=

E[x2
iβi]

V ar(xi)
(2)

Where the second equality follows from the standard OLS assumption that the error is

uncorrelated with the regressors. By the definition of the covariance, E[AB] = E[A]E[B] +

Cov(A,B), so

=
E[x2

i ]E[βi]

V ar(xi)
+

Cov(x2
i , βi)

V ar(xi)
(3)

Since E[xi] = 0 by construction, E[x2
i ] = V ar(xi), yielding the final result that

E[β̂] = β̄ +
Cov(x2

i , βi)

V ar(xi)
(4)

This result clearly shows that a necessary and sufficient condition for OLS to estimate β̄ is

that x2
i does not predict βi linearly. Thus, the requirement for OLS to yield the average effect

is substantially weaker than independence of xi and βi, which is sufficient, but not necessary.

OLS still estimates the average effect when coefficients and regressors are correlated (or when

there is dependence of higher order moments) as long as Cov(x2
i , βi) = 0. This condition

will hold, among others, if E[βi|xi] is symmetric around a point on the y-axis, for example

when it is linear or more generally a polynomial of odd order that is not shifted horizontally.

However, if the coefficients are correlated with x2
i , e.g. because (conditional average) effects
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are larger or smaller when xi is large in absolute value, the OLS estimate will differ from the

average effect.3

For the multivariate case with a demeaned regressor matrix X and a K×1 vector of aver-

age coefficients β̄, it is straightforward to show that the kth element ofX ′y is
∑K

l=1 Cov(xki, xliβli).

Using the same arguments as above, the expectation of the OLS coefficient is E[β̂] =

β̄ + (X ′X)−1C where the kth element of C is
∑K

l=1Cov(xkixli, βli) =
∑K

l=1 E[xkixliβli].
4

If an instrumental variable is available, several methods allow for estimation of β̄ or

other features of the distribution of effects even when x is endogenous. See Mogstad and

Torgovitsky (2024) for a review. These results obviously still apply to the case at hand

where x is independent of or uncorrelated with ε. However, in addition to the standard

IV assumptions, these estimation strategies assume that the instrument is independent of

βi and the coefficients in the first stage equation, γi. While the standard IV assumptions

are typically discussed or tested, little attention is paid to these additional restrictions in

practice. Yet the results for OLS imply that heterogeneous coefficients lead to bias when the

IV is related to the first or second stage coefficients.

Specifically, consider the case of the just-identified IV estimator, which is the ratio of the

OLS estimates from the reduced form equation (yi = ziβiγi + η) and the first stage equation

(xi = ziγi + ν). Using the formulas from above yields

plim β̂IV =
E[β̂γ

OLS
]

E[γ̂OLS]
=

E[βiγi] +
Cov(z2i ,βiγi)

V ar(zi)

E[γi] +
Cov(z2i ,γi)

V ar(zi)

(5)

=
E[βiγi]

E[γi]
· E[γi]
E[γi] +

Cov(z2i ,γi)

V ar(zi)

+
Cov(z2i , βiγi)

E[γi]V ar(zi) + Cov(z2i , γi)
(6)

= βIV · γ̄

γ̄ +
Cov(z2i ,γi)

V ar(zi)

+
Cov(z2i , βiγi)

E[γiz2i ]
(7)

3Observe that for binary x,
Cov(x2

i ,βi)
V ar(xi)

= Cov(xi,βi)
V ar(xi)

is the coefficient from regressing βi on an intercept

and x, which is E[yi|x = 1]− E[yi] = E[βi|x = 1]− E[βi]. Thus E[β̂] = E[βi|x = 1], showing the well-known
result that OLS still estimates the average effect of treatment on the treated in the presence of heterogeneity.

4Using Cov(xkixli, βli) = E[xkixliβli]− E[xki]E[xliβli] and E[xki] = 0.
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The first two lines follow from the definitions and rearranging terms, the last line makes use

of the fact that V ar(zi) = E[z2i ] and Cov(z2i , γi) = E[γiz2i ] − E[γi]E[z2i ]. The IV estimator

thus suffers from a multiplicative bias that is the ratio of the average first stage effect to the

OLS estimate of the first stage coefficient. This bias arises from the effect of heterogeneity

on the first stage estimate. In addition, there is an additive bias term that arises from

the bias due to heterogeneity in the reduced form equation (and is also scaled by the same

multiplicative term). The bias thus depends on unknown quantities that enter the formulas

in a complex way, making it difficult to assess in practice. Thus, it is crucial to take the

validity of the additional assumption that the IV neither predicts first stage nor reduced

form equation coefficients as serious as the standard IV assumptions.

In summary, this note shows that OLS estimates can be misleading about the effects of

a regressor when effects are heterogeneous. OLS estimates can be negative even when all

individual slopes are positive. OLS estimates the average effect if and only if the slopes

are uncorrelated with the squared regressor. This condition is weaker than the requirement

of independence that is typically invoked, but likely to be violated in many studies. For

example, decreasing returns to scale likely induce a negative correlation, while one would

expect optimizing agents to choose xi such that it is (positively) correlated with βi. If this

condition fails, the OLS estimate differs from the average slope by the covariance of βi and

x2
i divided by the variance of xi. Since the variance of xi is known and positive, this simple

result allows researchers to assess whether there is bias and determine its sign if they have

information on how slopes change with the square of the regressor. Instrumental variables

still identify (local) average effects under the additional assumption that the instrument

is independent of the coefficients in the first stage and the reduced form equation, but

estimates suffer from complicated biases when these assumptions fail. This result underlines

that these assumptions should be scrutinized more in practice, because violations may often

be as problematic as failure of the standard IV validity assumption. More generally, the

results that heterogeneity leads to biased OLS coefficients suggest that researchers should
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probe more for the presence of heterogeneity and the conditions under which their estimates

remain unbiased in the presence of heterogeneous effects.
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