Cognitive skills in decisions under compound risk and ambiguity

Sasha Prokosheva

Center for Economic Research and Graduate Education Charles University in Prague

September 11, 2014

Motivation

- ▶ Three types of uncertainty: risk, compound risk, ambiguity
- Some theories explicitly connect behavior toward ambiguity and behavior toward compound risk (Segal, 1987; Seo 2009; Halevy and Ozdenoren, 2008)

Is relating ambiguity to RoCL a valid behavioral assumption?

- Halevy (2007): reduction of compound lotteries (RoCL) and attitudes toward ambiguity are related (WTP for 4 lotteries, student subject sample)
- Abdellaoui, Klibanoff, and Placido (2014, forthcoming): students, engineer and non-engineer majors. Engineers who were reducing compound lotteries exhibited less tendency to be ambiguity neutral.

How do cognitive and other background characteristics influence the relationship between attitudes to ambiguity and RoCL?

Literature and hypothesis

Strand #1

relationship between RoCL and attitudes to ambiguity (Halevy, 2007; Abdellaoui, 2013, Dean and Ortoleva, 2014): inconclusive results

Strand #2

relationship between (non-)cognitive skills and economic preferences (Anderson et al., 2011; Benjamin et al., 2013; Borghans et al., 2009; Burks et al., 2009; Dohmen et al., 2010; Eckel et al., 2012; Sutter et al. 2013)

Hypotheses

H1: Among those who exhibit ambiguity neutral preferences, higher cognitive ability leads to higher probability to exhibit RoCL.

H2: Among those who exhibit RoCL, higher cognitive ability leads to higher probability to be ambiguity neutral.

(Lahno (2014): Peer-effects in decision-making under ambiguity)

Contribution

- Further explore the relationship between attitudes to ambiguity and RoCL using a non-standard subject sample
- ► Test for the relationship with cognitive skills
- ▶ Should investigations of empirical validity include tests on abilities? (Abdellaoui et al., 2011; Ahn et al., 2010; Hey et al., 2010; Conte and Hey, 2013; Hey and Pace, 2012)

Experimental design

Design

Subject sample: Adolescents 11-12 yo, 11 classes

Implementation: Physical, boxes in bags Elicitation: Multiple pricing list (MPL) Order of tasks: 3 tasks in different order

Incentives: Everyone was paid for one random task

Two treatments

Fox and Tversky (1995): Comparative ignorance; Chow and Sarin (2001)

Lotteries presented In order

► Lotteries presented *At once*

Lotteries	presented

	Max lottery prize						
	100 CZK	200 CZK	Total				
At once	3	2	5				
In order	3	3	6				
Total	6	5	11				

Measures of preferences and abilities

Uncertainty preferences

- ightharpoonup L_R = risky lottery
- ightharpoonup L_C = compound lottery
- $ightharpoonup L_A = ambiguous lottery$

Able to reduce compound risk: $L_C = L_R$ Ambiguity-neutral: $L_A = L_R$

Tests

- Arithmetic test (AT; CorrectGrp)
- Working memory/Operation span test (WM; OspanTotal)
- Non-cognitive abilities tests (PSY; mathanx, sensation)

Results I

- Attitudes to ambiguity and RoCL are related
- Several differences with other studies

	Study:	H 2007			D&A 2014			A 2013			This paper		
		Reduce compound lotteries											
Ambiguity n	eutral	yes	no	\sum	yes	no	\sum	yes	no	\sum	yes	no	\sum
yes	Count	22	6	28	27	1	28	13	17	30	57	19	76
300	Expected	(4.5)	(23.5)		(5.7)	(22.3)		(4.4)	(25.6)		(31.7)	(44.3)	
no	Count	1	113	114	3	117	120	4	81	85	18	86	104
110	Expected	(18.5)	(95.5)		(24.3)	(95.7)		(12.6)	(72.4)		(43.3)	(60.7)	
	\sum	23	119	142	30	118	148	17	98	115	75	105	180
isher's exact tes	st (2-sided)		0.000*			0.000*			*0000			*0000	

^{* =} p-value

H 2007 = Halevy (2007)

D&A 2014 = Dean and Ortoleva (2014)

A 2013= Abdellaoui et al. (2013)

Results II, Variation with background

Dependent var	A	mbN	RoCL			
	(1)	(2)	(3)	(4)		
AT score	0.027*	0.020	0.038**	0.030**		
	(0.015)	(0.015)	(0.015)	(0.015)		
WMT score	-0.001	-0.000	0.000	0.002		
	(0.003)	(0.003)	(0.003)	(0.003)		
Controls						
Female		-0.161**		-0.220**		
		(0.072)		(0.069)		
Prague		0.166**		0.114		
		(0.069)		(0.069)		
Preuso-R ²	0.012	0.050	0.030	0.075		
LR (p-value)	2.9(0.23)	12.1(0.016)	7.3(0.026)	18.2(0.001)		
Observations	179	179	179	179		

Notes: Results (marginal effects) are from probit model, standard errors are in parentheses

^{**}Significant at the 5% level.

^{*}Significant at the 10% level.

Results III, Variation with background by treatments

Treatment		At	once		In order				
Dependent var	An	nbN	Ro	CL	An	ıbN	RoCL		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
AT score	0.049**	0.053**	0.078**	0.076**	0.023	0.019	0.026	0.022	
	(0.022)	(0.023)	(0.018)	(0.020)	(0.020)	(0.020)	(0.020)	(0.020)	
WMT score	0.009**	0.008**	0.038**	0.012**	-0.008**	-0.006*	-0.006	-0.004	
	(0.004)	(0.004)	(0.014)	(0.003)	(0.004)	(0.004)	(0.004)	(0.004)	
Controls									
Female		-0.069		-0.190**		-0.149		-0.152	
		(0.109)		(0.097)		(0.092)		(0.095)	
Prague		0.313**		0.211**		0.055		0.047	
		(0.000)		(0.092)		(0.097)		(0.095)	
Preuso-R ²	0.085	0.183	0.209	0.292	0.028	0.045	0.020	0.039	
LR (p-value)	8.7(0.013)	18.9(0.001)	22.0(0.000)	30.7(0.000)	3.9(0.139)	6.3(0.175)	2.8(0.250)	5.3(0.261)	
Observations	76	76	76	76	103	103	103	103	

Notes: Results (marginal effects) are from probit model, standard errors are in parentheses

^{**}Significant at the 5% level.

^{*}Significant at the 10% level.