The long term effects of early educational selection a quasi-natural policy experiment from Hungary

Klára Gurzó* and Dániel Horn**

*CEU and **MTA KRTK KTI and ELTE The project is supported by the Hungarian Scientific Research Fund (no. 109338)

SKILLS conference, Prague 16-17. September 2014.

Literature

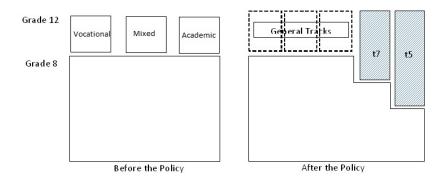
- There is a convincing set of empirical studies that early selection associates well with inequality both on the short- and the long-run (e.g. OECD 2005; Brunello and Checchi 2007; Schütz et al. 2008)
- There is evidence on the short run (e.g. Hanushek and Woesmann 2006; Allmendinger 2005; but see Waldinger 2007; or Kerckhoff 1986; Galindo-Rueda and Vignoles 2005; but see Manning and Pischke 2006), as well as the long run (e.g. Meghir and Palme 2005; Pekkarinen, Uusitalo, and Kerr 2009; but see Hall 2012 or Malamud and Pop-Eleches 2010) on (the lack of) causal effects
- However most of these studies looked at general reforms and not the partial effect of age-of-selection (but see van Elk et al. 2011; or Horn 2013; but both for short run effects)
- And most studies utilize a 'comprehensive' rather than a 'selective' reform

The policy Empirics Conclusion

Hungary

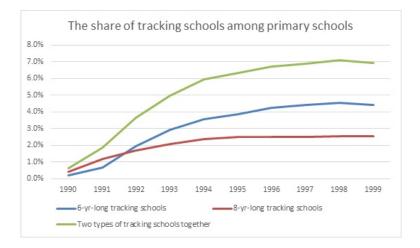
- The pre-transition Hungarian education system resembled that of the Soviet system
 - 8 years of general training and 4 years of tracked training: academic, mixed, vocational
 - relatively centralized
- Post-transition the public administration was highly decentralized
 - over 3000 local governments
 - which had to provide public education (among others)
- Dramatic demographic decline (no. 1st grade students 1980: 175.000; 1990: 125.000)
- Increasing pressure on school providers to attract children from outside the catchment area
 - regulation implicitly (1985) and later explicitly (1993) allowed this

The road to Early selection


Hungary

- An obvious solution to this pressure was to introduce elite academic tracks as early as possible
- This coincided with the interest of the church(es)
- And was (implicitly) supported by two main parties in the parliament (Christian Democrats/Conservatives and Liberals)
- Two types of early-selective academic tracks were introduced
 - an 8-year-long, which selects at age 10 before grade 5 (t5)
 - a 6-year-long, which selects at age 12, before grade 7 (t7)

The road to Early selection


Institutional change

The road to Early selection

Institutional change

The road to Early selection

Early-selective tracks today

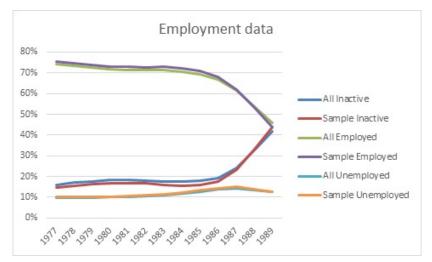
Data Method Results

Datasets

- Hungarian Census 2011
 - full population (cca. 10m)
 - place of birth and place of resindece (current and previous)
 - education path (restricted)
 - labor market status
- Hungarian Wage Survey 2011
 - over 200.000 observations
 - full public and sample of private sphere (over 5 employed)
 - ISCO, place of work and gender
- Own School Survey
 - In which year has the school opened (or closed) an early-selective track

Data Method Results

Sample


- born between May 31, 1976.
 and May 31, 1989.
- for whom the place of residence between ages 10 and 18 could be identified
- who lived in a settlement, which ever established an early selective track

Years Non- Treated		Tracking From Grade 5	Tracking From Grade 7	Both	Total	
1977	48018	0	289	0	48307	
1978	42270	0	3529	0	45799	
1979	31080	0	12325	0	43405	
1980	16735	3071	20931	1311	42048	
1981	8886	5458	19837	5763	39944	
1982	4445	7152	18132	7621	37350	
1983	2355	7435	16877	8756	35423	
1984	1314	7297	14402	11319	34332	
1985	844	6870	14931	12371	35016	
1986	1175	6794	14726	13791	36486	
1987	2808	7182	12675	13860	36525	
1988	15432	22097	0	0	37529	
1989	15346	21652	0	0	36998	
Total	190708	95008	148654	74792	509162	
Fraction	0.37	0.19	0.29	0.15	1	

The policy Empirics Conclusion **Data** Method Results

Sample

Difference-in-difference

• Reduced-form estimates:

$$y_{ics} = \alpha + \beta t \mathbf{5}_{cs} + \eta_s + \gamma_c + \kappa X_{ics} + \epsilon_{ics}$$
(1)

$$y_{ics} = \alpha + \beta t 7_{cs} + \eta_s + \gamma_c + \kappa X_{ics} + \epsilon_{ics}$$
(2)

$$y_{ics} = \alpha + \beta t \mathbf{5}_{cs} + \gamma t \mathbf{7}_{cm} + \eta_s + \gamma_c + \kappa X_{ics} + \epsilon_{ics}$$
(3)

- where y is the outcome (employment, unemployment, estimated wage and tertiary enrollment)
- where i individual, c cohort, s settlement;
- t5 and t7 are the two early-selective track dummies
- X is a vector of individual characteristics (gender, year of birth, "R is a student", "R is on maternity leave")
- η is the settlement, γ is the cohort fixed effect
- $\alpha \; eta$ and κ are parameters and ϵ individual error
- Note: this model is a reduced form of an IV model, where individual participation in an early-selective track is instrumented by t5 or t7.

Data <mark>Method</mark> Results

Event study

• Event study estimates:

$$y_{ics} = \alpha + \beta_1 t 5_{cs}^{<-2} + \beta_2 t 5_{cs}^{-2} + \beta_3 t 5_{cs}^{-1} + \beta_4 t 5_{cs}^{0} + \beta_5 t 5_{cs}^{1} + \beta_6 t 5_{cs}^{2} + \beta_7 t 5_{cs}^{>2} \dots$$
(4)

$$y_{ics} = \alpha + \beta_1 t 7_{cs}^{<-2} + \beta_2 t 7_{cs}^{-2} + \beta_3 t 7_{cs}^{-1} + \beta_4 t 7_{cs}^{0} + \beta_5 t 7_{cs}^{1} + \beta_6 t 7_{cs}^{2} + \beta_7 t 7_{cs}^{>2} + \dots$$
(5)

$$y_{ics} = \alpha + \beta_1 t 5_{cs}^{<-2} + \beta_2 t 5_{cs}^{-2} + \beta_3 t 5_{cs}^{-1} + \beta_4 t 5_{cs}^{0} + + \beta_5 t 5_{cs}^{1} + \beta_6 t 5_{cs}^{2} + \beta_7 t 7_{cs}^{>2} + + \beta_8 t 7_{cs}^{<-2} + \beta_9 t 7_{cs}^{-2} + \beta_{10} t 7_{cs}^{-1} + \beta_{11} t 7_{cs}^{0} + + \beta_{12} t 7_{cs}^{1} + \beta_{13} t 7_{cs}^{2} + \beta_{14} t 7_{cs}^{<2} \dots$$
(6)

 where superscripts indicate years to/from the establishment of the early-selective track on a given settlement for a given cohort

Data Method **Results**

Full sample

	unemployed			employed			
VARIABLES	both	t7 only	t5 only	both	t7 only	t5 only	
t7	0.00234		0.00292	-0.00243		-0.00244	
	(0.00219)		(0.00263)	(0.00181)		(0.00206)	
t5	-0.00245	0.000560		0.000896	0.000391		
	(0.00239)	(0.00271)		(0.00183)	(0.00223)		
gender	0.00985***	-0.0118***	-0.00908***	0.00969***	0.0112***	0.00919***	
	(0.00223)	(0.00266)	(0.00254)	(0.00186)	(0.00221)	(0.00213)	
Constant	0.140***	0.144***	0.134***	0.858***	0.858***	0.863***	
	(0.0161)	(0.0201)	(0.0177)	(0.0124)	(0.0152)	(0.0138)	
Observations	408,405	244,365	330,815	509,274	303,797	413,522	
R-squared	0.009	0.008	0.009	0.534	0.543	0.534	
No. of settlements	139	61	106	139	61	106	
Robust se	ettlement*c	ohort level	clustered s	tandard error	s in parenthe	ses;	
		*** p<0.01	, ** p<0.05	, * p<0.1			
settlement and coh	ort FE, yea	ar of birth, "	is in schoo	l", "is on mat	ernity leave"	are controlled	

Data Method **Results**

Full sample

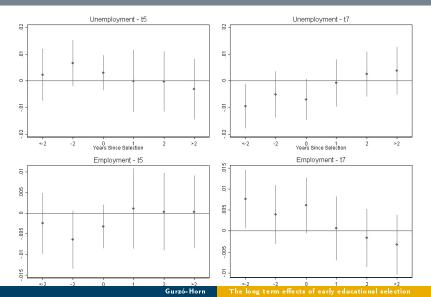
	In(wage)			tertiary			
VARIABLES	both	t7 only	t5 only	both	t7 only	t5 only	
t7	0.00125		0.00238	0.00167		0.00269	
	(0.00276)		(0.00268)	(0.00379)		(0.00382)	
t5	-0.00174	-0.000872		-0.00518	-0.00402		
	(0.00338)	(0.00336)		(0.00441)	(0.00483)		
gender	0.0449***	0.0544***	0.0447***	-0.149***	-0.147***	-0.149***	
	(0.00539)	(0.00780)	(0.00603)	(0.00251)	(0.00343)	(0.00286)	
Constant	11.84***	11.86***	11.84***	0.336***	0.350***	0.337***	
	(0.0149)	(0.0188)	(0.0157)	(0.0165)	(0.0182)	(0.0182)	
Observations	450,927	269,582	365,414	509,274	303,797	413,522	
R-squared	0.024	0.025	0.025	0.084	0.081	0.084	
No. of settlements	139	61	106	139	61	106	
Robust se	ettlement*c	ohort level	clustered s	tandard error	rs in parenthe	ses;	
		*** p<0.01	, ** p<0.05	, * p<0.1			
settlement and coh	ort FE, yea	ar of birth, "	'is in schoo	l", "is on ma	ternity leave"	are controlle	

Data Method **Results**

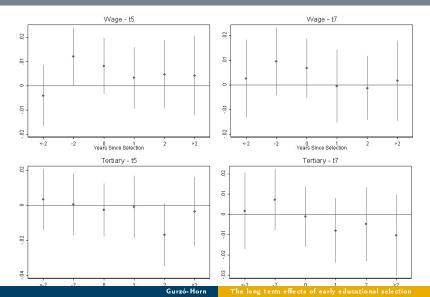
Academic students only

	unemployed			employed			
VARIABLES	both	t7 only	t5 only	both	t7 only	t5 only	
t7	0.000954		-0.000940	-0.00127		0.000333	
	(0.00340)		(0.00389)	(0.00281)		(0.00314)	
t5	-0.00239	-0.000137		0.00185	0.00138		
	(0.00348)	(0.00373)		(0.00264)	(0.00271)		
gender	-0.0135***	-0.0145***	-0.0137***	0.0116***	0.0123***	0.0119***	
	(0.00229)	(0.00252)	(0.00264)	(0.00191)	(0.00214)	(0.00219)	
Constant	0.102***	0.118***	0.101***	0.889***	0.881***	0.891***	
	(0.0237)	(0.0293)	(0.0259)	(0.0172)	(0.0205)	(0.0187)	
Observations	140,080	83,677	114,951	181,681	108,633	149,428	
R-squared	0.015	0.015	0.016	0.623	0.627	0.623	
No. of settlements	139	61	106	139	61	106	
Robust se	ettlement*c	ohort level	clustered s	tandard error	s in parenthe	ses;	
		*** p<0.01	, ** p<0.05	, * p<0.1	-		
settlement and coh	ort FE, yea	ar of birth, "	is in schoo	l", "is on ma	ternity leave"	are controlle	

Data Method **Results**


Academic students only

	In(wage)			tertiary			
VARIABLES	both	t7 only	t5 only	both	t7 only	t5 only	
t7	0.00444		0.00490	0.000378		-0.000272	
	(0.00419)		(0.00460)	(0.00521)		(0.00621)	
t5	0.00662	0.00344		-0.00270	8.62e-05		
	(0.00637)	(0.00542)	and the second s	(0.00767)	(0.00776)		
gender	0.0989***	0.107***	0.100***	-0.0841***	-0.0835***	-0.0802***	
	(0.00519)	(0.00728)	(0.00589)	(0.00440)	(0.00574)	(0.00466)	
Constant	11.95***	11.96***	11.95***	0.553***	0.586***	0.556***	
	(0.0277)	(0.0355)	(0.0288)	(0.0273)	(0.0305)	(0.0309)	
Observations	154,066	92,050	126,437	181,681	108,633	149,428	
R-squared	0.042	0.044	0.043	0.043	0.041	0.042	
No. of settlements	139	61	106	139	61	106	
Robust se	ettlement*c	ohort level	clustered s	tandard error	s in parenthe	ses;	
		*** p<0.01	, ** p<0.05	, * p<0.1			
settlement and coh	ort FE, yea	ar of birth, "	'is in schoo	l", "is on ma	ternity leave"	are controlled	


Data Method **Results**

Event study

The policy Empirics Conclusion Data Method **Results**

Event study

Summary, thoughts and further tests

- In sum: we do not see any effect of early selection on labor market and tertiary enrollment
- Potential critique:
 - Take-up is too small! Why do we expect any effect from 5-8% of the population?
 - Reduced form shows average effects. What we see is that winners win and loosers lose.
- Answer:
 - But why is there no difference (or negative difference) between t7 and t5? Two years of additional tracking should at least turn the coefficients to the right direction.
 - And why do we not see any effects on the academic subsample? Take-up there is much larger.
- To do:
 - Try to incorporate take-up rates. Include average take-up by cohort and settlement instead of dummies.
 - Pocus on the ends of the outcome distribution. e.g. Look at the ratio of very high earners.

Summary, thoughts and further tests

- But what if results are really robust? How do we explain this in view of the numerous counter-evidence?
- Answer: Although, it might be that these early-selective tracks increase test scores (cf. Horn 2013), but (un)employment, wage or even tertiary enrollment depends on various other factors.
 - Tracking might not have an effect (or maybe have a negative effect) on some of these.
 - Short-run test scores might capture a little effect, but 2 or 4 years of separated education has just no real effect a decade later.
- Also other studies looked at general reforms that included other systemic change (curricular, teacher training, more resources), this reform was a purely redistributive. It captures the pure effect of segregation. And there is none!

