VSE - Introduction to Game Theory

Problem set \#2 - Due Wednesday, December 2, 2015
Teamwork is an important part of this course. Therefore, please work in groups of up to 4 students. Each student can only be in one group. Each group submits one copy of problem set with the names of all members.
Homework can be delivered: (1) by email or (2) personally during the lecture or office hours.

No late submissions will be accepted.
Problem 1 [22 points]: List the strategies of the following game and find Subgame perfect Nash equilibria and Nash equilibria in pure strategies. Is there any NE that is not SPNE?

0,2

Problem 2 [28 points]: Consider the following game of incomplete information between Pat and Mat. Pat's type is known but Mat may be either an H type (with probability p) or an L type (with probability 1-p). The payoffs to this simultaneous game of incomplete information are as follows:

H type

P1\P2	X	Y
A	1,1	0,0
B	0,0	0,0

P1\P2	X	Y
A	0,0	0,0
B	0,0	2,2

a) Suppose that $p=0.75$. Find all pure strategy Bayes-Nash equilibria.
b) Suppose that $p=0.25$. Find all pure strategy Bayes-Nash equilibria.

Problem 3 [24 points]: Find the following Nash equilibria in a second-price sealed-bid auction:
a) Player 1 (player with the highest valuation) obtains the object.
b) Player 1 (player with the highest valuation) obtains the object - different from (a).
c) Player 4 (player with the fourth highest valuation) obtains the object.

Note that to be able to solve auction problems we need to express person's willingness to obtain an object in monetary units. Therefore if player values an object for 100 CZK then he is indifferent between not winning the auction and winning and getting the object for 100 CZK).

Problem 4 [26 points]: Amy, Barbara and Carol are independently thinking of getting a tattoo. They are meeting at a party in a few days. Each has to decide whether or not to go to the tattoo parlor. For each of them the most preferred outcome is one where she shows up with a tattoo and at least one of her friends also does (being indifferent between being one of two or one of three). The least preferred outcome is to be the only one of the three with a tattoo. The middle-ranked outcomes are the ones where she does not have a tattoo (she is indifferent among those outcomes).
a) Find the Nash equilibrium/a in pure strategies.
b) Find subgame perfect NE if this game is sequential and each friend informs the others about whether she got a tattoo or not. The order of players is Amy, Barbara, Carol.
c) What if there are five friends instead of three? How would NE change?

