

Introduction to Game Theory Lecture 9

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

Today

- Applications of NE and SPNE
- Auctions
- English Auction
- Second-Price Sealed-Bid Auction
- First-Price Sealed-Bid Auction

Auctions

- Used to allocate:
- Art
- Government bonds
- Radio spectrum
- Forms:
- Sequential bidding
- Bid placed in sealed envelopes
- Application of Game Theoretic Approach:
- Find most effective design

Auction 1

- Rules:
- bidders sequentially submit increasing bids
- person that made current bid wins if no one wishes to submit a higher bid
- everybody knows their personal value of an object => before the bidding starts, every bidder knows their "maximal bid"
- this type of auction is called English Auction

Auction 1

- Bidder with the highest maximal bid wins

- he pays the second maximal bid
- only two bidders matter for the outcome
- bidder with the highest maximal bid - B1
- bidder with the $2^{\text {nd }}$ highest maximal bid - B2
- to win, B1 has to bid only "slightly" more than maximal bid of B2
- if the bidding increment is small -> we take the winning price to be equal to the $2^{\text {nd }}$ highest maximal bid

Auction 2

- Rules:

- all bidders submit their bids simultaneously
- all bidders place their bids in sealed envelopes
- bidder with the highest bid wins
- winning bidder pays the $2^{\text {nd }}$ highest bid
- this type of auction is called Second Price Sealed Bid Auction

Auction 2

- Bidder with the highest maximal bid wins

- he pays the second maximal bid
- only two bidders matter for the outcome
- bidder with the highest maximal bid - B1
- bidder with the $2^{\text {nd }}$ highest maximal bid - B2
- to win, B1 has to bid only "slightly" more than maximal bid of B2
- price is equal to the 2 nd highest maximal bid

Auction 1 and Auction 2

- Auction 1 and Auction 2 lead to the same outcome:
- winner is the same
- winner pays the same price

Second Price Sealed Bid

Auction as a strategic game

- Players: n bidders
- Actions: all possible bids (non negative numbers)
-Payoffs: difference between value and second highest bid if win, zero otherwise

Second Price Sealed Bid

Notation:

- n players are ordered according to their valuations: $\mathrm{v}_{1}>\mathrm{v}_{2}>\mathrm{v}_{3}>\ldots>\mathrm{v}_{\mathrm{n}}$
- each player i submits a bid b_{i}
- if b_{i} is highest and b_{j} second highest bid:
- bidder i gets $\mathrm{v}_{\mathrm{i}}-\mathrm{b}_{\mathrm{j}}$
- all other bidders get zero

Second Price Sealed Bid

Nash Equilibrium 1:

- Every bidder bids their value:
$\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)$
- bidder 1 , with value v_{1}, wins and pays b_{2}
- bidder 1 has payoff $\left(v_{1}-b_{2}\right)$
- all the other bidders get zero

Second Price Sealed Bid

Every bidder bids their value is NE :
$\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)$
Winner - bidder 1 :

- bid more - nothing changes
- bid less - lose and get nothing
=> winner has no incentive to deviate
Loser k:
- bid less - nothing changes
- bid more (less than v1) - nothing changes
- bid more $\left(\mathrm{b}_{\mathrm{k}} \geq \mathrm{v}_{1}\right)$ - win, but earn $\mathrm{v}_{\mathrm{k}}-\mathrm{b}_{\mathrm{k}}<0$
$=>$ losers have no incentive to deviate

Second Price Sealed Bid

Nash Equilibrium 2:

- First bidder bids his value, others bid zero:
$\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{1}, 0,0, \ldots, 0\right)$
- bidder 1 , with value v_{1}, wins and pays 0
- bidder 1 has payoff v_{1}
- all the other bidders get zero

Second Price Sealed Bid

First bidder bids v_{1}, others bid zero is NE :
$\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)=\left(\mathrm{v}_{1}, 0,0, \ldots, 0\right)$
Winner - bidder 1 :

- bid more - nothing changes
- bid less - nothing changes
=> winner has no incentive to deviate
Loser k:
- bid less - not possible
- bid more (less than v_{1}) - nothing changes
- bid more $\left(b_{k} \geq v_{1}\right)$ - win, but earn $v_{k}-b_{k}<0$
=> losers have no incentive to deviate

Second Price Sealed Bid

Nash Equilibrium 3:

- Bidders bid in the following way:
$\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{2}, v_{1}, 0, \ldots, 0\right)$
- bidder 2 , with value v_{2}, wins and pays v_{2}
- bidder 2 has payoff 0
- all the other bidders get zero

Second Price Sealed Bid

Bidders bidding in the following way is NE: $\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{2}, v_{1}, 0, \ldots, 0\right)$
Winner - bidder 2 :

- bid more - nothing changes
- bid less (still more than v_{2}) - nothing changes
- bid less (less than v_{2}) - lose and get nothing => winner has no incentive to deviate
Loser k:
- bid less - nothing changes
- bid more (less than v_{1}) - nothing changes
- bid more $\left(b_{k} \geq v_{1}\right)$ - win, but earn $v_{k}-b_{k} \leq 0$
=> losers have no incentive to deviate

Second Price Sealed Bid

NE $3-\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{2}, v_{1}, 0, \ldots, 0\right)$:

- bidder 1 has to believe that bidder 2 will continue bidding up to v_{1}, then bidding v_{2} is best response
- bidder 2 is taking risk of negative payoff if bidder 1 bids more than v_{2}
- still, given that all bidders bid according to NE 3, everybody is playing the best response
- for bidder two, bidding v_{1} is weakly dominated by bidding v_{2}

In general: in a second-price sealed-bid auction, a player's bid equal to her valuation weakly dominates all her other bids

Second Price Sealed Bid

Many Nash Equilibria, but one is special:

- NE where every bidder bids her value $\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)$ is the only one where every player's action weakly dominates all her other actions

Auction 3

- Two players participate in the English auction (bidders sequentially submit increasing bids) for 100CZK banknote
- Person that made current bid wins if no one wishes to submit a higher bid
- BOTH bidders must pay the highest amount they bid
- NE: no Nash equilibria in pure strategies in static form of this auction

Auction 4

- all bidders submit their bids simultaneously
- all bidders place their bids in sealed envelopes
- bidder with the highest bid wins
- winning bidder pays her own bid
- this type of auction is called First Price Sealed Bid Auction

First Price Sealed Bid

- Winner pays the price she bids, not the second highest price
- We assume games with perfect information, i.e. everybody knows value of all bidders
- Players: n bidders
- Actions: all possible bids (non negative numbers)
- Payoffs: difference between value and bid if win, zero otherwise

First Price Sealed Bid

Nash Equilibrium 1:

- Bidders bid in the following way: $\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{2}, v_{2}, v_{3}, \ldots, v_{n}\right)$
- bidder 1 , with value v 1 , wins and pays v_{2}
- bidder 1 has payoff $\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)$
- all the other bidders get zero

First Price Sealed Bid

Bidders bid in the following way is NE :
$\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{2}, v_{2}, v_{3}, \ldots, v_{n}\right)$
Winner - bidder 1 :

- bid more - still win, pay more
- bid less - lose and get nothing
=> winner has no incentive to deviate
Loser k:
- bid less - nothing changes
- bid more (less than v_{2}) - nothing changes
- bid more $\left(b_{k} \geq v_{2}\right)$ - win, but earn $v_{k}-b_{k}<0$ => losers have no incentive to deviate

First Price Sealed Bid

- First-price sealed-bid auction has many NE
- In all of them, bidder 1 wins the auction
- First-price sealed-bid auction where bidders bid $\left(b_{1}, b_{2}, b_{3}, \ldots, b_{n}\right)=\left(v_{2}, v_{2}, v_{3}, \ldots, v_{n}\right)$ yields the same outcome as Second-price sealedbid auction

Note: usually we do not know the value of other bidders -> we use expected value

Summary

- Game theoretic approach and concept of Nash equilibrium has many useful applications
- Auctions - Nash equilibrium concept helps to determine the winner and the return for the owner of the object being sold
- This allow us to compare different types of auctions in terms of price paid
- In case of perfect information - First- and Secondprice sealed-bid auction yields the same results

Midterm Exam

Histogram - points on horizontal and number of students on vertical axis

Midterm

