

Introduction to Game Theory Lecture 9

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

Auctions

Summary

- Applications of NE and SPNE
 - Auctions
 - English Auction
 - Second-Price Sealed-Bid Auction
 - First-Price Sealed-Bid Auction

- Used to allocate:
 - Art
 - Government bonds
 - Radio spectrum
- Forms:
 - Sequential bidding
 - Bid placed in sealed envelopes
- Application of Game Theoretic Approach:
 - Find most effective design

- Rules:
 - bidders sequentially submit increasing bids
 - person that made current bid wins if no one wishes to submit a higher bid
 - everybody knows their personal value of an object
 => before the bidding starts, every bidder knows their "maximal bid"
- this type of auction is called English Auction

- Bidder with the highest maximal bid wins
 - he pays the second maximal bid
 - only two bidders matter for the outcome
 - bidder with the highest maximal bid B1
 - bidder with the 2nd highest maximal bid B2
 - to win, B1 has to bid only "slightly" more than maximal bid of B2
 - if the bidding increment is small -> we take the winning price to be equal to the 2nd highest maximal bid

- Rules:
 - all bidders submit their bids simultaneously
 - all bidders place their bids in sealed envelopes
 - bidder with the highest bid wins
 - winning bidder pays the 2nd highest bid
 - this type of auction is called Second Price Sealed Bid Auction

- Bidder with the highest maximal bid wins
 - he pays the second maximal bid
 - only two bidders matter for the outcome
 - bidder with the highest maximal bid B1
 - bidder with the 2nd highest maximal bid B2
 - to win, B1 has to bid only "slightly" more than maximal bid of B2
 - price is equal to the 2nd highest maximal bid

Auction 1 and Auction 2

- Auction 1 and Auction 2 lead to the same outcome:
 - winner is the same
 - winner pays the same price

Auction as a strategic game

- Players: n bidders
- Actions: all possible bids (non negative numbers)
- Payoffs: difference between value and second highest bid if win, zero otherwise

Notation:

- n players are ordered according to their valuations: v₁>v₂>v₃>...>v_n
- each player i submits a bid b_i
- if b_i is highest and b_i second highest bid:
 - bidder i gets v_i-b_i
 - all other bidders get zero

Nash Equilibrium 1:

• Every bidder bids their value:

 $(b_1, b_2, b_3, \dots, b_n) = (v_1, v_2, v_3, \dots, v_n)$

- bidder 1, with value v_1 , wins and pays b_2
- bidder 1 has payoff (v_1-b_2)
- all the other bidders get zero

Every bidder bids their value is NE: $(b_1, b_2, b_3, \dots, b_n) = (v_1, v_2, v_3, \dots, v_n)$

Winner – bidder 1:

- bid more nothing changes
- bid less lose and get nothing
 => winner has no incentive to deviate

Loser k:

- bid less nothing changes
- bid more (less than v1) nothing changes
- bid more (b_k ≥ v₁) win, but earn v_k b_k < 0
 => losers have no incentive to deviate

Nash Equilibrium 2:

- First bidder bids his value, others bid zero:
 (b₁,b₂,b₃,...,b_n) = (v₁,0,0,...,0)
 - bidder 1, with value v₁, wins and pays 0
 - bidder 1 has payoff v₁
 - all the other bidders get zero

First bidder bids v_1 , others bid zero is NE: ($b_1, b_2, b_3, \dots, b_n$) = ($v_1, 0, 0, \dots, 0$)

Winner – bidder 1:

- bid more nothing changes
- bid less nothing changes
 => winner has no incentive to deviate

Loser k:

- bid less not possible
- bid more (less than v_1) nothing changes
- bid more (b_k ≥ v₁) win, but earn v_k b_k < 0
 => losers have no incentive to deviate

Nash Equilibrium 3:

- Bidders bid in the following way: $(b_1, b_2, b_3, \dots, b_n) = (v_2, v_1, 0, \dots, 0)$
 - bidder 2, with value v_2 , wins and pays v_2
 - bidder 2 has payoff 0
 - all the other bidders get zero

Bidders bidding in the following way is NE: $(b_1, b_2, b_3, \dots, b_n) = (v_2, v_1, 0, \dots, 0)$

Winner – bidder 2:

- bid more nothing changes
- bid less (still more than v_2) nothing changes
- bid less (less than v₂) lose and get nothing
 => winner has no incentive to deviate

Loser k:

- bid less nothing changes
- bid more (less than v_1) nothing changes
- bid more (b_k ≥ v₁) win, but earn v_k b_k ≤ 0
 => losers have no incentive to deviate

Second Price Sealed Bid

NE 3 -
$$(b_1, b_2, b_3, \dots, b_n) = (v_2, v_1, 0, \dots, 0)$$
:

- bidder 1 has to believe that bidder 2 will continue bidding up to v_1 , then bidding v_2 is best response
- \bullet bidder 2 is taking risk of negative payoff if bidder 1 bids more than v_2
- still, given that all bidders bid according to NE 3, everybody is playing the best response
- for bidder two, bidding v_1 is weakly dominated by bidding v_2

In general: in a second-price sealed-bid auction, a player's bid equal to her valuation weakly dominates all her other bids

Many Nash Equilibria, but one is special:

 NE where every bidder bids her value (b₁,b₂,b₃,...,b_n) = (v₁,v₂,v₃,...,v_n) is the only one where every player's action weakly dominates all her other actions

- Two players participate in the English auction (bidders sequentially submit increasing bids) for 100CZK banknote
- Person that made current bid wins if no one wishes to submit a higher bid
- BOTH bidders must pay the highest amount they bid
- NE: no Nash equilibria in pure strategies in static form of this auction

Auctions

Second Price

First Price

Summary

- all bidders submit their bids simultaneously
- all bidders place their bids in sealed envelopes
- bidder with the highest bid wins
- winning bidder pays her own bid
- this type of auction is called First Price Sealed Bid Auction

- Winner pays the price she bids, not the second highest price
- We assume games with perfect information, i.e. everybody knows value of all bidders
- Players: n bidders
- Actions: all possible bids (non negative numbers)
- Payoffs: difference between value and bid if win, zero otherwise

Nash Equilibrium 1:

- Bidders bid in the following way: $(b_1, b_2, b_3, \dots, b_n) = (v_2, v_2, v_3, \dots, v_n)$
 - bidder 1, with value v1, wins and pays v_2
 - bidder 1 has payoff (v_1-v_2)
 - all the other bidders get zero

Bidders bid in the following way is NE: $(b_1, b_2, b_3, \dots, b_n) = (v_2, v_2, v_3, \dots, v_n)$

Winner – bidder 1:

- bid more still win, pay more
- bid less lose and get nothing
 => winner has no incentive to deviate

Loser k:

- bid less nothing changes
- bid more (less than v_2) nothing changes
- bid more (b_k ≥ v₂) win, but earn v_k b_k < 0
 => losers have no incentive to deviate

- First-price sealed-bid auction has many NE
- In all of them, bidder 1 wins the auction
- First-price sealed-bid auction where bidders bid $(b_1, b_2, b_3, ..., b_n) = (v_2, v_2, v_3, ..., v_n)$ yields the same outcome as Second-price sealedbid auction

Note: usually we do not know the value of other bidders -> we use expected value

Summary

- Game theoretic approach and concept of Nash equilibrium has many useful applications
- Auctions Nash equilibrium concept helps to determine the winner and the return for the owner of the object being sold
- This allow us to compare different types of auctions in terms of price paid
- In case of perfect information First- and Secondprice sealed-bid auction yields the same results

Midterm Exam

Histogram – points on horizontal and number of students on vertical axis

