

Introduction to Game Theory Lecture 4

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

Preview

- Review
- Mixed strategy Nash equilibrium
 - review example
 - best response functions graphs
- Elimination of strategies that are strictly dominated by mixed strategies
 - illustration
 - example

Review

Mixed strategy NE

- need for making oneself unpredictable leads to mixing strategies
- Mixed strategy: player chooses a probability distribution $(p_1, p_2, ..., p_N)$ over her set of actions rather than a single action
- If there is no NE without mixing, we will find at least one MSNE (Nash proof)
- If NE without mixing exists, we may find additional MSNE

Preview

Review

- Mixed strategy Nash equilibrium
 - review example
 - best response functions graphs
- Elimination of strategies that are strictly dominated by mixed strategies
 - illustration
 - example

Summary

Mixed Strategy NE

- not just mathematical exercise
- examples:
 - matching pennies
 - rock paper scissors
 - penalty kicks
 - baseball pitches
 - tennis service
 - travel agencies pricing policies
- making yourself unpredictable

Summary

Mixed Strategies - Example

Matching Pennies:

- no Nash Equilibria, no pair of actions is compatible with a steady state
- there exists steady state in which each player chooses each action with probability ¹/₂

Mixed Strategy NE – How to Find

2 1	H (q)	T (1-q)
Н (р)	\$1,-\$1	-\$1,\$1
Т (1-р)	-\$1,\$1	\$1,-\$1

If $q < \frac{1}{2}$: T is better than H If $q > \frac{1}{2}$: H is better than T If $q = \frac{1}{2}$: H is as good as T

$$B_{1}(q) = \begin{cases} \{0\} & \text{if } q < \frac{1}{2} \\ \{p: 0 \le p \le 1\} & \text{if } q = \frac{1}{2} \\ \{1\} & \text{if } q > \frac{1}{2} \end{cases}$$

$$B_2(p) = \begin{cases} \{1\} & \text{if } p < \frac{1}{2} \\ \{q: 0 \le q \le 1\} & \text{if } p = \frac{1}{2} \\ \{0\} & \text{if } p > \frac{1}{2} \end{cases}$$

Summary

Mixed Strategies - Example

 player 1 (2) chooses H with probability p (q) and T with probability 1-p (1-q)

MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

two NE: (B,B) and (S,S) any MSNE?

• P1 must be indifferent between B and S (otherwise not mixing, playing pure strategy):

$$q^{*}2+(1-q)^{*}0 = q^{*}0+(1-q)^{*}1 => q=1/3$$

B S

 P2 must be indifferent between B and S: p*1+(1-p)*0 = p*0+(1-p)*2 => p=2/3 MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

2 1	B (q)	S (1-q)
В (р)	2,1	0,0
S (1-p)	0,0	1,2

If q<1/3: S is better than B If q>1/3: B is better than S If q=1/3: B is as good as S

$$B_{1}(q) = \begin{cases} \{0\} & \text{if } q < 1/3 \\ \{p: 0 \le p \le 1\} & \text{if } q = 1/3 \\ \{1\} & \text{if } q > 1/3 \end{cases}$$

$$B_{2}(p) = \begin{cases} \{0\} & \text{if } p < 2/3 \\ \{q: 0 \le q \le 1\} & \text{if } p = 2/3 \\ \{1\} & \text{if } p > 2/3 \end{cases} \xrightarrow{\text{MSNE:}} \\ \{(2/3, 1/3); (1/3, 2/3)\} \end{cases}$$

Review

MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

player 1 (2) chooses B with probability p (q) and S with probability 1-p (1-q)

MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

two NE: (T,R) and (B,L) any MSNE?

• P1 must be indifferent between T and B (otherwise not mixing, playing pure strategy):

$$q^{*}0+(1-q)^{*}0 = q^{*}2+(1-q)^{*}0 => q=0$$

T B

 P2 must be indifferent between L and R: p*1+(1-p)*2 = p*2+(1-p)*1 => p=1/2 MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

2	L (q)	R (1-q)
Т (р)	0,1	0,2
В (1-р)	2,2	0,1

If q>0: B is better than T If q=0: B is as good as S

$$B_{1}(q) = \begin{cases} \{0\} & \text{if } q > 0 \\ \{p: 0 \le p \le 1\} & \text{if } q = 0 \end{cases}$$

$$B_{2}(p) = \begin{cases} \{1\} & \text{if } p < 1/2 & \text{MSNE:} \\ \{q: 0 \le q \le 1\} & \text{if } p = 1/2 & \{(p, 1-p); (0, 1)\} \\ \{0\} & \text{if } p > 1/2 & p \ge 1/2 \end{cases}$$

Mixed Strategy NE

- player 1 chooses T with probability p and B with probability 1-p
- player 2 chooses L with probability q and R with probability 1-q

Mixed Strategy NE

Holmes vs. Moriarty

- Holmes (a genius) gets on the train London-Canterbury-Dover to get to Dover
- Moriarty (equally smart guy) rents a special and follows Holmes
- Holmes prefers to get off on different station
- Moriarty prefers the same station

Mixed Strategy NE

Holmes vs. Moriarty

- Holmes: Moriarty knows that I want to go to D, so I'd better get off in C
- Holmes: Moriarty is almost as smart as I am he knows this and goes to C, so I'd better go to D
- Holmes: But Moriarty knows that I know...

Review

MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

...so whatever my reasoning is, Moriarty will figure it out and get me

Summary

Mixed Strategy NE

- Solution to Holmes' dilemma: If Holmes himself does not know which action he will choose, Moriarty cannot take advantage of knowing Holmes's action
 - => Ignorance is a bliss

Summary

Mixed Strategy NE

- no pure strategy NE players have to mix:
- for example: $\{(\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2})\}$ could this work?

H 🤹	D (q)	C (1-q)	¹ / ₂ D+ ¹ / ₂ C
D (p)	0,8	8, 4	42
C (1-p)	4,4	-4,2	0,-1
¹ / ₂ D+ ¹ / ₂ C	2,2	2,-1	2,0.5

• still no NE, we need different probabilities for mixing

Review

MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

• how about: {(1/3,2/3),(3/4,1/4)} – could this work?

Yes, this leads to one Mixed strategy NE

Summary

Mixed Strategy NE

H	D (q)	C (1-q)
D (p)	0,8	8,-4
C (1-p)	4,-4	-4,2

• Holmes must be indifferent between D and C (otherwise not mixing, playing pure strategy):

$$q^{*}0+(1-q)^{*}8 = q^{*}4+(1-q)^{*}(-4) => q= \frac{3}{4}$$

D C

 Moriarty must be indifferent between D and C: p*8+(1-p)*(-4) = p*(-4)+(1-p)*2 => p= 1/3 MSNE

Elimination by Mixing

Summary

Mixed Strategy NE

$$B_{1}(q) = \begin{cases} \{1\} & \text{if } q < 3/4 \\ \{p: 0 \le p \le 1\} & \text{if } q = 3/4 \\ \{0\} & \text{if } q > 3/4 \end{cases}$$

$$B_2(p) = \begin{cases} \{0\} & \text{if } p < 1/3 \\ \{q: 0 \le q \le 1\} & \text{if } p = 1/3 \\ \{1\} & \text{if } p > 1/3 \end{cases}$$

MSNE: {(¹/₃,²/₃); (³/₄,¹/₄)}

Summary

Preview

Review

- Mixed strategy Nash equilibrium
 - review example
 - best response functions graphs
- Elimination of strategies that are strictly dominated by mixed strategies
 - illustration
 - example

 no pure strategy is dominated by another pure strategy

2 1	А	В	С
D	5,4	3,5	2,7
E	2,7	8,2	3,5
F	3,4	4,5	2,4
½D+½E	3.5,5.5	5.5,3.5	2.5,6

 however, ½D + ½E strictly dominates F (3.5,5.5,2.5) > (3,4,2)

• Example:

- only strategy that is never best response to opponent's actions is T
- there exists p and (1-p) such that:
 pM + (1-p)B > T

- pM + (1-p)B > T
 - p*1+(1-p)*4>3 => p<1/3
 - p*8+(1-p)*3>4 => p>1/5
 - p*3+(1-p)*2>1 => always true
- we can choose for example p=1/4

2 1	L	С	R
	3,4	4,5	
М	1,7	8,2	3,5
В	4,4	3,5	2,4

- pM + (1-p)B > T
- $\frac{1}{4}M + \frac{3}{4}B = (\frac{13}{4}, \frac{17}{4}, \frac{9}{4}) > (3, 4, 1) = T$

- only strategy that is never best response to opponent's actions is R
- there exists p and (1-p) such that:
 pL + (1-p)C > R

- pL + (1-p)C > R
 - p*7+(1-p)*2>5 => p>3/5
 - p*4+(1-p)*5>4 => p<1
- we can choose for example p=4/5
- $\frac{4}{5}L + \frac{1}{5}C = (6, 4.2) > (5, 4) = R$

 after iterative elimination of dominated strategies we get:

 no further elimination is possible because every action is best response to some of opponent's actions

Summary

- Mixed strategies Nash equilibrium
 - making your actions unpredictable
 - duopoly, sport
- Iterative elimination of strictly dominated strategies
 - strategy can be dominated by pure strategy
 - strategy can be dominated by mixed strategy
- Homework deadline next Wednesday