

Introduction to Game Theory Lecture 4

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

Preview

- Review
- Mixed strategy Nash equilibrium
- review example
- best response functions - graphs
- Elimination of strategies that are strictly dominated by mixed strategies
- illustration
- example

Review

Mixed strategy NE

- need for making oneself unpredictable leads to mixing strategies
- Mixed strategy: player chooses a probability distribution $\left(p_{1}, p_{2}, . ., p_{N}\right)$ over her set of actions rather than a single action
- If there is no NE without mixing, we will find at least one MSNE (Nash - proof)
- If NE without mixing exists, we may find additional MSNE

Preview

- Review
- Mixed strategy Nash equilibrium
- review example
- best response functions - graphs
- Elimination of strategies that are strictly dominated by mixed strategies
- illustration
- example

Mixed Strategy NE

- not just mathematical exercise
- examples:
- matching pennies
- rock paper scissors
- penalty kicks
- baseball pitches
- tennis service
- travel agencies pricing policies
- making yourself unpredictable

Mixed Strategies - Example

Matching Pennies:

1		2	Head
Head	$\$ 1 .-\$ 1$	$-\$ 1 \$ 1$	
Tail	$-\$ 1, \$ 1$	$\$ 1-\$ 1$	

- no Nash Equilibria, no pair of actions is compatible with a steady state
- there exists steady state in which each player chooses each action with probability $1 / 2$

Mixed Strategy NE - How to Find

12	H (q)	T (1-q)	If $\mathrm{q}<1 / 2$: T is better than H If $\mathrm{q}>1 / 2$: H is better than T If $q=1 / 2: H$ is as good as T
H (p)	\$1,-\$1	-\$1,\$1	
T (1-p)	-\$1,\$1	\$1,-\$1	
$\mathrm{B}_{1}(\mathrm{q})=$	$\left\{\begin{array}{l}\{0\} \\ \{p: 0 \\ \{1\}\end{array}\right.$		$\begin{aligned} & \text { if } q<1 / 2 \\ & \text { if } q=1 / 2 \\ & \text { if } q>1 / 2 \end{aligned}$
$\mathrm{B}_{2}(\mathrm{p})=$	$\left\{\begin{array}{l}\{1\} \\ \{q: 0 \\ \{0\}\end{array}\right.$		$\begin{aligned} & \text { if } p<1 / 2 \\ & \text { if } p=1 / 2 \\ & \text { if } p>1 / 2 \end{aligned}$

Mixed Strategies - Example

- player 1 (2) chooses H with probability p (q) and T with probability 1-p (1-q)

Mixed Strategy NE

- P1 must be indifferent between B and S (otherwise not mixing, playing pure strategy):

$$
\underbrace{q^{*} 2+(1-q)^{*} 0}_{B}=\underbrace{q^{*} 0+(1-q)^{* 1}}_{S}=>q=1 / 3
$$

- P 2 must be indifferent between B and S : $p * 1+(1-p)^{*} 0=p^{*} 0+(1-p)^{*} 2=>p=2 / 3$

Mixed Strategy NE

$1 \quad 2$	B (q)	$S(1-q)$	If $q<1 / 3$: S is better than B If $q>1 / 3$: B is better than S If $q=1 / 3$: B is as good as S
B (p)	2,1	0,0	
S (1-p)	0,0	1,2	
$\mathrm{B}_{1}(\mathrm{q})=$	$\left[\begin{array}{l}\{0\} \\ \{p: \\ \{1\}\end{array}\right.$	<p<1\}	if $q<1 / 3$ if $q=1 / 3$ if $q>1 / 3$
$B_{2}(p)=$	$\left[\begin{array}{l}\{0\} \\ \{q: \\ \{1\}\end{array}\right.$	<q $\leq 1\}$	if $p<2 / 3$ if $p=2 / 3 \quad \mathrm{MSNE}:$ if $p>2 / 3 \quad\{(2 / 3,1 / 3) ;(1 / 3,2 / 3)\}$

Mixed Strategy NE

- player 1 (2) chooses B with probability p(q) and S with probability 1-p (1-q)

Mixed Strategy NE

- P1 must be indifferent between T and B (otherwise not mixing, playing pure strategy):

$$
\underbrace{q^{*} 0+(1-q) * 0}_{T}=\underbrace{q * 2+(1-q) * 0}_{B}=>q=0
$$

- $P 2$ must be indifferent between L and R :

$$
p^{\star} 1+(1-p)^{\star 2}=p^{*} 2+(1-p)^{\star} 1=>p=1 / 2
$$

Mixed Strategy NE

$$
\begin{aligned}
& 12 \mathrm{~L}(\mathrm{q}) \quad \mathrm{R}(1-\mathrm{q}) \quad \text { If } \mathrm{q}>0 \text { : } \mathrm{B} \text { is better than } \mathrm{T} \\
& \text { If } q=0 \text { : } B \text { is as good as } S \\
& B_{1}(q)= \begin{cases}\{0\} & \text { if } q>0 \\
\{p: 0 \leq p \leq 1\} & \text { if } q=0\end{cases} \\
& B_{2}(p)=\left\{\begin{array}{lll}
\{1\} & \text { if } p<1 / 2 & \text { MSNE: } \\
\{q: 0 \leq q \leq 1\} & \text { if } p=1 / 2 & \{(p, 1-p) ;(0,1)\} \\
\{0\} & \text { if } p>1 / 2 & p \geq 1 / 2
\end{array}\right.
\end{aligned}
$$

Mixed Strategy NE

- player 1 chooses T with probability p and B with probability 1-p
- player 2 chooses L with probability q and R with probability 1-q

Mixed Strategy NE

Holmes vs. Moriarty

- Holmes (a genius) gets on the train

London-Canterbury-Dover to get to Dover

- Moriarty (equally smart guy) rents a special and follows Holmes
- Holmes prefers to get off on different station
- Moriarty prefers the same station

M	$D(q)$	$C(1-q)$
H	0,8	$8,-4$
$D(p)$	$4,-4$	$-4,2$

Mixed Strategy NE

Holmes vs. Moriarty

- Holmes: Moriarty knows that I want to go to D, so I'd better get off in C
- Holmes: Moriarty is almost as smart as I am he knows this and goes to C, so l'd better go to D
- Holmes: But Moriarty knows that I know...

Mixed Strategy NE

...so whatever my reasoning is, Moriarty will figure it out and get me

Mixed Strategy NE

- Solution to Holmes' dilemma: If Holmes himself does not know which action he will choose, Moriarty cannot take advantage of knowing Holmes's action
=> Ignorance is a bliss

Mixed Strategy NE

- no pure strategy NE \longrightarrow players have to mix:
- for example: $\{(1 / 2,1 / 2),(1 / 2,1 / 2)\}$ - could this work?

$\mathrm{H} \text { 要M }$	D (q)	C (1-q)	$1 / 2 \mathrm{D}+1 / 2 \mathrm{C}$
D (p)	0.8	8.) 4	(4) 2
C (1-p)	4, 4	-4 2	0,-1
$1 / 2 \mathrm{D}+1 / 2 \mathrm{C}$	2 2	2,-1	2,0.5

- still no NE, we need different probabilities for mixing

Mixed Strategy NE

- how about: $\{(1 / 3,2 / 3),(3 / 4,1 / 4)\}$ - could this work?

$\mathrm{H} \text { M }$	D (q)	C (1-q)	$3 / 4 \mathrm{D}+1 / 4 \mathrm{C}$
D (p)	0 (8)	8.-4	25
C (1-p)	(4, 4	- 2	2-2.5
$1 / 3 \mathrm{D}+2 / 3 \mathrm{C}$	8130	00	(20)

- Yes, this leads to one Mixed strategy NE

Mixed Strategy NE

D (q)
C (1-q)

D (p)	0,8	$8,-4$
$C(1-p)$	$4,-4$	$-4,2$

- Holmes must be indifferent between D and C (otherwise not mixing, playing pure strategy):

$$
\underbrace{q^{\star} 0+(1-q) * 8}_{D}=\underbrace{q^{\star} 4+(1-q)^{\star}(-4)}_{C}=>q=3 / 4
$$

- Moriarty must be indifferent between D and C : $p^{*} 8+(1-p)^{\star}(-4)=p^{\star}(-4)+(1-p)^{\star 2}=>p=1 / 3$

Mixed Strategy NE

$B_{1}(q)= \begin{cases}\{1\} & \text { if } q<3 / 4 \\ \{p: 0 \leq p \leq 1\} & \text { if } q=3 / 4 \\ \{0\} & \text { if } q>3 / 4\end{cases}$
$B_{2}(p)= \begin{cases}\{0\} & \text { if } p<1 / 3 \\ \{q: 0 \leq q \leq 1\} & \text { if } p=1 / 3 \\ \{1\} & \text { if } p>1 / 3\end{cases}$

MSNE:
$\{(1 / 3,2 / 3) ;(3 / 4,1 / 4)\}$

Preview

- Review
- Mixed strategy Nash equilibrium
- review example
- best response functions - graphs
- Elimination of strategies that are strictly dominated by mixed strategies
- illustration
- example

Elimination by Mixed Strategies

- no pure strategy is dominated by another pure strategy

	$\mathbf{2}$	A	B	C
1		5,4	3,5	2,7
D	5,4			
E	2,7	8,2	3,5	
F	3,4	4,5	2,4	
$1 / 2 \mathrm{D}+1 / 2 \mathrm{E}$	$3.5,5.5$	$5.5,3.5$	$2.5,6$	

- however, $1 / 2 \mathrm{D}+1 / 2 \mathrm{E}$ strictly dominates F $(3.5,5.5,2.5)>(3,4,2)$

Elimination by Mixed Strategies

- Example:

	2	L	C
1		R	
T	3,4	4,5	17
M	17	8.2	3,5
B	4.4	3,5	2,4

- only strategy that is never best response to opponent's actions is T
- there exists p and (1-p) such that: $p \mathrm{M}+(1-\mathrm{p}) \mathrm{B}>\mathrm{T}$

Elimination by Mixed Strategies

- $p \mathrm{M}+(1-p) \mathrm{B}>\mathrm{T}$
- $p * 1+(1-p)^{*} 4>3=>p<1 / 3$
- $p * 8+(1-p) * 3>4=>p>1 / 5$
- $p * 3+(1-p) * 2>1$ => always true
- we can choose for example $p=1 / 4$

Elimination by Mixed Strategies

	2	L	C	R
		3,4	4,5	1,7
T	3,4			
M	1,7	8,2	3,5	
B	4,4	3,5	2,4	

- $p \mathrm{M}+(1-\mathrm{p}) \mathrm{B}>\mathrm{T}$
- $1 / 4 \mathrm{M}+3 / 4 \mathrm{~B}=\left(13 / 4,{ }^{17} / 4,{ }^{2} / 4\right)>(3,4,1)=\mathrm{T}$

Elimination by Mixed Strategies

		2	L	C
1		R		
M	1.7	8.2	3,5	
	4.4	3,5	2,4	

- only strategy that is never best response to opponent's actions is R
- there exists p and (1-p) such that: $p L+(1-p) C>R$

Elimination by Mixed Strategies

2		L	C	R
M	$1(7)$	8,2	$3(5)$	
B	$4(4)$	3.5	$2(4)$	

- $\mathrm{pL}+(1-p) \mathrm{C}>\mathrm{R}$

$$
\begin{aligned}
& \text { - } p^{*} 7+(1-p)^{*} 2>5=>p>3 / 5 \\
& \text { - } p^{*} 4+(1-p)^{*} 5>4=>p<1
\end{aligned}
$$

- we can choose for example $p=4 / 5$
- $4 / 5 L+1 / 5 C=(6,4.2)>(5,4)=R$

Elimination by Mixed Strategies

- after iterative elimination of dominated strategies we get:

		2	L
1		C	
M	1.7	8.2	
B	4.4	3.5	

- no further elimination is possible because every action is best response to some of opponent's actions

Summary

- Mixed strategies Nash equilibrium
- making your actions unpredictable
- duopoly, sport
- Iterative elimination of strictly dominated strategies
- strategy can be dominated by pure strategy
- strategy can be dominated by mixed strategy
- Homework deadline next Wednesday

