

Introduction to Game Theory Lecture 3

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

- Contact: kalk00@vse.cz
 <u>home.cerge-ei.cz/kalovcova/teaching.html</u>
- Office hours: Wed 7.30pm 8.00pm, NB339 or by email appointment
- Osborne, M. J. An Introduction to Game Theory Gibbons, R. – A Primer in Game Theory Suggested articles
- Important information on webpage
- Grading: Midterm 30%, Final 60%, Homework 10%, Experiments up to 5%

- Nash Equilibrium is a concept of a steady state in given situation
- No one can *unilaterally* improve their payoff, therefore no one has incentive to deviate from equilibrium action
- Nash Equilibrium is an action profile in which every player's action is best response to every other player's action

Mixed Strategy NE

Summary

- No player wishes to change her behavior, knowing the other players' behavior => there are no regrets
- Equilibrium behavior is based on general knowledge and experience with similar players and situations; not on particular circumstances

- We can find Nash equilibria by:
 - Elimination of strictly dominated strategies
 - "Circle Method"
- Elimination of weakly dominated strategies leads to:
 - strict Nash equilibria
 - but can eliminate nonstrict Nash equilibria
- That is why we only eliminate strictly dominated strategies
- Elimination method is sometimes imprecise, NE (Circle Method, Best responses) is stronger.

Review

Best Response

Mixed Strategy NE

Summary

Preview

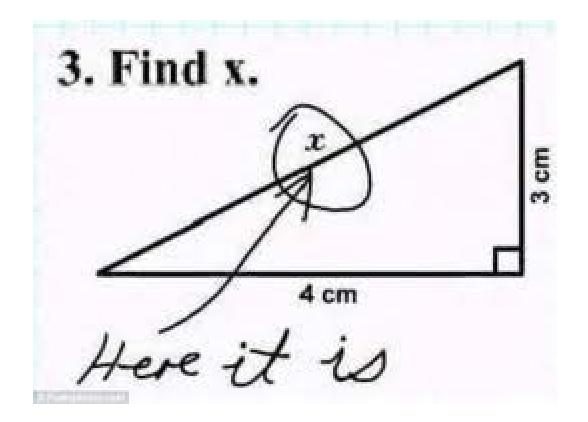
- Best response functions (why circles work)
- Mixed strategies Nash equilibrium

Review

Mixed Strategy NE

Summary

Best Response



Chicken Game

- Jim and Buzz are driving cars towards each other
- Who turns first is a chicken
- If nobody turns the car, they both die...

Rebel Without a Cause (1955)

Review

Summary

Chicken Game

- Two players, two actions => 2 by 2 game
- First player has following preferences: (Stay,Turn)>(Turn,Turn)>(Turn,Stay)>(Stay,Stay)
 Situation for second player is analogical
- Assign payoff correspondingly: 20,5,0,-100 (e.g. 4,3,2,1 would work just as well) Chicken game:

Jim Buzz	Turn	Stay
Turn	5,5	0,20
Stay	20,0	-100,-100

Mixed Strategy NE

Summary

Chicken Game - BR

Chicken game:

Jim Buzz	Turn	Stay
Turn	5,5	0.20
Stay	200	-100,-100

Two Nash Equilibria: {Stay,Turn}, {Turn,Stay}

Best response:

 $BR_1(T)=S; BR_1(S)=T; BR_2(T)=S; BR_2(S)=T;$

 $BR_i(a_{-i})$

Summary

Best Response Function

Why does the "method of circles" work? Because "circles" are best response functions!

 $BR_i(a_{-i}) = \{a_i \text{ in } A_i : u_i(a_i, a_{-i}) \ge u_i(a'_i, a_{-i}) \text{ for all } a'_i \text{ in } A_i\}$

Every member of the set $BR_i(a_{-i})$ is a best response of player i to a_{-i} : if each of the other players adheres to a_{-i} then player i can do no better than choose a member of

11/31

Best Response Function - NE

The action profile a* is a Nash equilibrium if and only if every player's action is a best response to the other players' actions:

 a_{i}^{*} is in $B_{i}(a_{-i}^{*})$ for every player i

This is why "method of circles", i.e. looking for best responses leads to NE

- Nash Equilibrium is a concept of a steady state in given situation
- No one can *unilaterally* improve their payoff, therefore no one has incentive to deviate from equilibrium action
- Nash Equilibrium is an action profile in which every player's action is best response to every other player's action

Best Response Function

Prisoners' Dilemma Game:

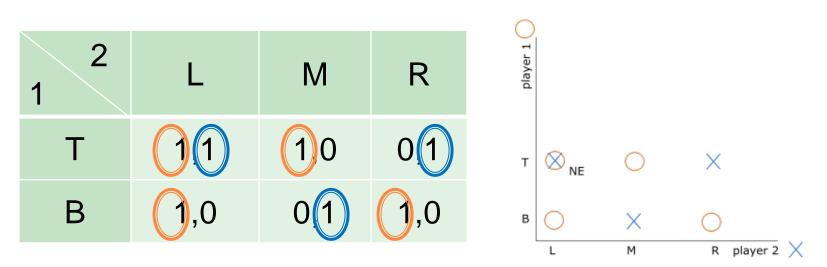
- $BR_{1}(C) = \{C\} \\BR_{1}(RS) = \{C\} \\BR_{2}(C) = \{C\} \\BR_{2}(RS) = \{C\} \\$
- -> single optimal action
- -> single optimal action

Mixed Strategy NE

Summary

Best Response Function

Yet another game:



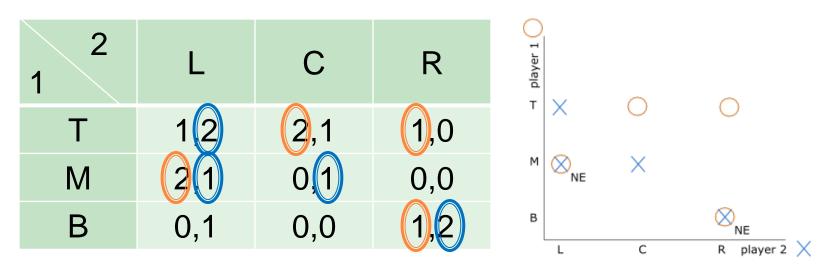
 $\begin{array}{ll} \mathsf{BR}_1(\mathsf{L}) = \{\mathsf{T},\mathsf{B}\} & -> & \text{more optimal actions} \\ \mathsf{BR}_1(\mathsf{M}) = \{\mathsf{T}\}, \ \mathsf{BR}_1(\mathsf{R}) = \{\mathsf{B}\} \\ \mathsf{BR}_2(\mathsf{T}) = \{\mathsf{L},\mathsf{R}\} & -> & \text{more optimal actions} \\ \mathsf{BR}_2(\mathsf{B}) = \{\mathsf{M}\} \end{array}$

Mixed Strategy NE

Summary

Best Response Function

Yet another another game:

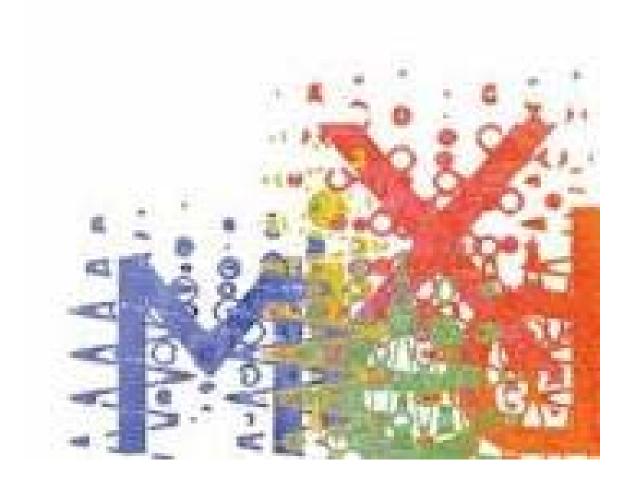


 $BR_1(L) = \{M\}, BR_1(C) = \{T\}, BR_1(R) = \{T,B\}$ $BR_2(T) = \{L\}, BR_2(M) = \{L,C\}, BR_2(B) = \{R\}$ Review

Mixed Strategy NE

Summary

Mixed Strategies



Mixed Strategy NE

Summary

Preview

 So far, in NE, behavior of each player is simply one action that she always plays

Today – "mixing things up"

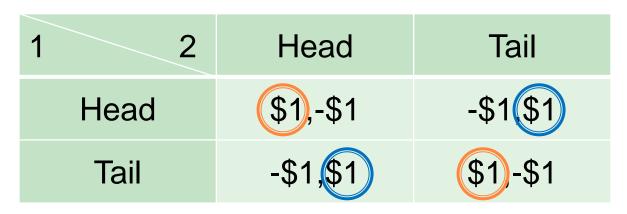
- Players' choices may vary:
 - different members of a population choose different actions
 - each member of a population chooses her action according to a probabilistic distribution

Mixed Strategies - Examples

- penalty kick
- rock paper scissor game
- matching pennies
- price wars (duopoly)
- card games
- need for making oneself unpredictable leads to mixing strategies

Mixed Strategies - Example

Matching Pennies:



- no Nash Equilibria, no pair of actions is compatible with a steady state
- there exists steady state in which each player chooses each action with probability ¹/₂

Mixed Strategies - Example

- player 2 plays H and T with probability 1/2:
- for player 1:
 - expected payoff from playing H: $\frac{1}{2}(1) + \frac{1}{2}(-1) = 0$
 - expected payoff from playing T: $\frac{1}{2}(-1) + \frac{1}{2}(1) = 0$

Player 1: playing H and T with probability 1/2 is her best response (she can not do any better)

The same holds for Player 2

Mixed Strategies - Example

- both players play H and T with probability $\frac{1}{2}$
- both play their best response given the action of their opponent
- none of them wants to change their strategy

=> { $(\frac{1}{2}, \frac{1}{2}); (\frac{1}{2}, \frac{1}{2})$ } is MSNE numbers in brackets correspond to probabilities of playing H and T respectively

Mixed Strategies - Definition

Mixed strategy: player chooses a probability distribution $(p_1, p_2, ..., p_N)$ over her set of actions

- e.g. $(\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$ is mixed strategy where player plays "L" with probability $\frac{1}{2}$ and "M" and "R" with probability $\frac{1}{4}$
- probabilities have to sum up to 1!
- mixed strategy may assign probability 1 to a single action pure strategy
 - e.g. (0,0,1) is pure strategy where player always plays "R"

Mixed Strategy NE

Notation:

- a_i action of ith player
- a action profile
 (set of all players' actions)
- $a_{-i} = (a_1, a_2, a_3, \dots, a_{i-1}, a_{i+1}, \dots, a_{N-2}, a_{N-1}, a_N)$
- $\alpha_i = (p_1, p_2, p_3, ..., p_N)$ mixed strategy of player i
- α mixed strategy profile
 (set of all players' mixed strategies)
- $\alpha_{-i} = (\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{N-2}, \alpha_{N-1}, \alpha_N)$

Mixed Strategy NE

- A Mixed Strategy Nash Equilibrium (MSNE) is a mixed strategy profile α^* such that no player *i* has a mixed strategy α_i such that she prefers $(\alpha_i, \alpha^*_{-i})$ to α^*
- i.e. expected payoff of α^* is at least as large as expected payoff of $(\alpha_i, \alpha^*_{-i})$ for every α_i :

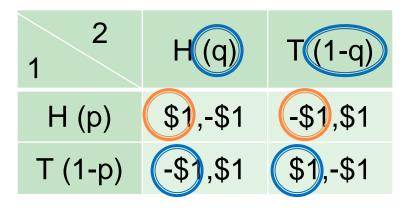
 $EU(\alpha_i) \ge EU(\alpha_i, \alpha_{-i}^*)$ for every α_i of player *i*

• α^* is a MSNE if and only if α^*_i is in $B_i(\alpha^*_{-i})$ for every player *i*

Mixed Strategy NE

Summary

Mixed Strategy NE – How to Find



- 1 playing H: q*1+(1-q)*(-1)=2q-1
- 1 playing T: q*(-1)+(1-q)*1=1-2q
- If q<1/2: T is better than H
- If q>1/2: H is better than T
- If q=1/2: H is equally good as T
- same holds for $p => \{(\frac{1}{2}, \frac{1}{2}); (\frac{1}{2}, \frac{1}{2})\}$ is MSNE

Mixed Strategy NE

- If there is no NE without mixing, we will find at least one MSNE (Nash proof)
- If NE without mixing exists, we may find additional MSNE

Review

vNM Preferences

- so far, payoff function had only ordinal meaning, now there is more...
- von Neumann and Morgenstern (vNM preferences)
- preferences regarding lotteries can be represented by the expected value of the payoff function
- each player prefers lottery with higher expected value of a payoff function
- so far players were maximizing their payoff; now – maximize expected payoff

Summarv

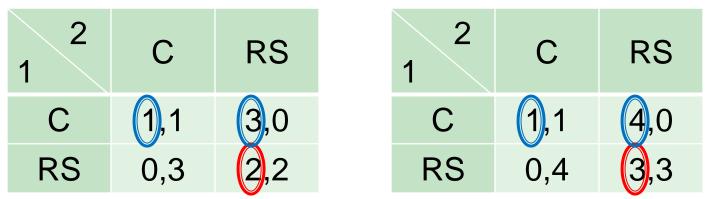
Review

Mixed Strategy NE

Summary

vNM Preferences

• consider the following tables:



- these tables represent the same game with ordinal preferences: (C,RS)>(RS,RS)>(C,C)>(RS,C)
- these tables represent different games with vNM preferences: e.g. compare sure outcome (RS,RS) with lottery $\frac{1}{2}(C,C) + \frac{1}{2}(C,RS)$ $2 = \frac{1}{2}1 + \frac{1}{2}3$ $3 > \frac{1}{2}1 + \frac{1}{2}4$

vNM Preferences

Strategic game with vNM preferences:

- set of players
- for each player, a set of actions
- for each player, preferences regarding lotteries over action profiles can be represented by the expected value of the payoff function over action profiles

Note: if NE – ordinal; if MSNE – vNM preferences

Summary

- von Neumann and Morgenstern preferences
- preferences regarding lotteries can be represented by the expected value of the payoff function
- Mixed strategy: player chooses a probability distribution $(p_1, p_2, ..., p_N)$ over her set of actions rather than a single action
- α^* is a MSNE if and only if $EU(\alpha_i) \ge EU(\alpha_i, \alpha^*_{-i})$ for every α_i of player *I*