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Syllabus
Review Best Response        Mixed Strategy NE         Summary

• Contact: kalk00@vse.cz     
home.cerge-ei.cz/kalovcova/teaching.html

• Office hours: Wed 7.30pm – 8.00pm, NB339
or by email appointment

• Osborne, M. J. – An Introduction to Game Theory    
Gibbons, R. – A Primer in Game Theory
Suggested articles

• Important information on webpage 

• Grading: Midterm 30%, Final 60%, 
Homework 10%, Experiments up to 5%

http://home.cerge-ei.cz/kalovcova/teaching.html


3 / 31

• Nash Equilibrium is a concept of a steady state in 
given situation

• No one can unilaterally improve their payoff, 
therefore no one has incentive to deviate from 
equilibrium action

• Nash Equilibrium is an action profile in which 
every player’s action is best response to every  
other player’s action

NE - Review
Review Best Response        Mixed Strategy NE         Summary
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• No player wishes to change her behavior,  
knowing the other players’ behavior => there are 
no regrets

• Equilibrium behavior is based on general 
knowledge and experience with similar players 
and situations; not on particular circumstances

NE - Review
Review Best Response        Mixed Strategy NE         Summary
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• We can find Nash equilibria by:
• Elimination of strictly dominated strategies
• “Circle Method”

• Elimination of weakly dominated strategies leads to:
• strict Nash equilibria
• but can eliminate nonstrict Nash equilibria

• That is why we only eliminate strictly dominated strategies

• Elimination method is sometimes imprecise, NE 
(Circle Method, Best responses) is stronger.
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• Best response functions (why circles work)

• Mixed strategies Nash equilibrium

Preview
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Best Response
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• Jim and Buzz are driving cars towards each other
• Who turns first is a chicken
• If nobody turns the car, they both die…

Rebel Without a Cause (1955)

Chicken Game
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• Two players, two actions => 2 by 2 game
• First player has following preferences:

(Stay,Turn)>(Turn,Turn)>(Turn,Stay)>(Stay,Stay)
Situation for second player is analogical

• Assign payoff correspondingly: 20,5,0,-100
(e.g. 4,3,2,1 would work just as well)
Chicken game:

Chicken Game

Jim             Buzz Turn Stay

Turn 5,5 0,20

Stay 20,0 -100,-100

Review  Best Response        Mixed Strategy NE         Summary
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Chicken game:

Two Nash Equilibria: {Stay,Turn}, {Turn,Stay}
Best response:
BR1(T)=S; BR1(S)=T; BR2(T)=S; BR2(S)=T;

Jim             Buzz Turn Stay

Turn 5,5 0,20

Stay 20,0 -100,-100

Chicken Game - BR
Review  Best Response        Mixed Strategy NE         Summary
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Why does the “method of circles” work?
Because “circles” are best response functions!

BRi(a−i) = {ai in Ai : ui(ai,a−i)≥ui(a'i,a−i) for all a'i in Ai}

Every member of the set BRi(a−i) is a best 
response of player i to a−i: 
if each of the other players adheres to a−i then 
player i can do no better than choose a member of 
BRi(a−i)

Best Response Function
Review  Best Response        Mixed Strategy NE         Summary
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The action profile a∗ is a Nash equilibrium if and 
only if every player’s action is a best response to 
the other players’ actions:

a*i is in Bi(a*−i) for every player i

This is why “method of circles”, i.e. looking for best 
responses leads to NE

Best Response Function - NE
Review  Best Response        Mixed Strategy NE         Summary
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• Nash Equilibrium is a concept of a steady state in 
given situation

• No one can unilaterally improve their payoff, 
therefore no one has incentive to deviate from 
equilibrium action

• Nash Equilibrium is an action profile in which 
every player’s action is best response to every  
other player’s action
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Prisoners’ Dilemma Game:

BR1(C) = {C} -> single optimal action 
BR1(RS) = {C}
BR2(C) = {C}   -> single optimal action 
BR2(RS) = {C}

1          2 Confess Silent

Confess 1,1 3,0

Silent 0,3 2,2

Best Response Function
Review  Best Response        Mixed Strategy NE         Summary



15 / 31

Yet another game:

BR1(L) = {T,B}   -> more optimal actions
BR1(M) = {T}, BR1(R) = {B}
BR2(T) = {L,R}   -> more optimal actions
BR2(B) = {M}

2
1 L M R

T 1,1 1,0 0,1

B 1,0 0,1 1,0

Best Response Function
Review  Best Response        Mixed Strategy NE         Summary
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Yet another another game:

BR1 (L)={M}, BR1 (C)={T}, BR1(R)={T,B}
BR2(T)={L}, BR2(M)={L,C}, BR2(B)={R} 

Best Response Function

2
1 L C R

T 1,2 2,1 1,0
M 2,1 0,1 0,0
B 0,1 0,0 1,2

Review  Best Response        Mixed Strategy NE         Summary
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Mixed Strategies
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• So far, in NE, behavior of each player is simply 
one action that she always plays

Today – “mixing things up”

• Players’ choices may vary:
• different members of a population choose different 

actions
• each member of a population chooses her action 

according to a probabilistic distribution

Preview
Review  Best Response        Mixed Strategy NE         Summary
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• penalty kick
• rock paper scissor game
• matching pennies
• price wars (duopoly)
• card games

• need for making oneself unpredictable leads to 
mixing strategies

19

Mixed Strategies - Examples
Review  Best Response        Mixed Strategy NE         Summary
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Matching Pennies:

• no Nash Equilibria, no pair of actions is 
compatible with a steady state

• there exists steady state in which each player 
chooses each action with probability ½ 

Mixed Strategies - Example

1               2 Head Tail

Head $1,-$1 -$1,$1

Tail -$1,$1 $1,-$1

Review  Best Response        Mixed Strategy NE         Summary
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• player 2 plays H and T with probability ½:
• for player 1:

• expected payoff from playing H:
½ (1) + ½ (-1) = 0

• expected payoff from playing T:
½ (-1) + ½ (1) = 0

Player 1: playing H and T with probability ½ is her 
best response (she can not do any better)
The same holds for Player 2

Mixed Strategies - Example
Review  Best Response        Mixed Strategy NE         Summary
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• both players play H and T with probability ½

• both play their best response given the action of 
their opponent

• none of them wants to change their strategy

=> {(½,½);(½,½)} is MSNE
numbers in brackets correspond to probabilities of 
playing H and T respectively

Mixed Strategies - Example
Review  Best Response        Mixed Strategy NE         Summary
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Mixed strategy: player chooses a probability 
distribution (p1,p2,..,pN) over her set of actions

• e.g. (½,¼,¼) is mixed strategy where player plays “L” 
with probability ½ and “M” and “R” with probability ¼

• probabilities have to sum up to 1!  
• mixed strategy may assign probability 1 to a 

single action – pure strategy
• e.g. (0,0,1) is pure strategy where player always plays 

“R”

Mixed Strategies - Definition
Review  Best Response        Mixed Strategy NE         Summary
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Notation:
• ai – action of ith player
• a – action profile 

(set of all players’ actions)
• a-i = (a1,a2,a3, … ,ai -1,ai +1, … ,aN -2,aN -1,aN)

• αi=(p1,p2,p3,..,pN) - mixed strategy of player i
• α – mixed strategy profile 
(set of all players’ mixed strategies)

• α-i = (α1,α2,α3, … ,αi -1,αi +1, … ,αN -2,αN -1,αN)

Mixed Strategy NE
Review  Best Response        Mixed Strategy NE         Summary
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• A Mixed Strategy Nash Equilibrium (MSNE) is a 
mixed strategy profile α* such that no player i has 
a mixed strategy αi such that she prefers (αi,α*-i)
to α*

• i.e. expected payoff of α* is at least as large as 
expected payoff of (αi,α*-i) for every αi:
EU(αi) ≥ EU(αi,α*-i) for every αi of player i

• α* is a MSNE if and only if α*i is in Bi(α*-i) for  
every player i

Mixed Strategy NE
Review  Best Response        Mixed Strategy NE         Summary
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• 1 playing H:  q*1+(1-q)*(-1)=2q-1
• 1 playing T:  q*(-1)+(1-q)*1=1-2q

• If q<½: T is better than H
• If q>½: H is better than T
• If q=½: H is equally good as T
• same holds for p => {(½,½);(½,½)} is MSNE

Mixed Strategy NE – How to Find

2
1 H (q) T (1-q)

H (p) $1,-$1 -$1,$1

T (1-p) -$1,$1 $1,-$1

Review  Best Response        Mixed Strategy NE         Summary



27 / 31

• If there is no NE without mixing, we will find 
at least one MSNE (Nash - proof)

• If NE without mixing exists, we may find 
additional MSNE

Mixed Strategy NE
Review  Best Response        Mixed Strategy NE         Summary
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• so far, payoff function had only ordinal meaning, 
now there is more…

• von Neumann and Morgenstern (vNM
preferences)

• preferences regarding lotteries can be  
represented by the expected value of the  payoff 
function

• each player prefers lottery with higher expected 
value of a payoff function

• so far – players were maximizing their payoff; 
now – maximize expected payoff

vNM Preferences
Review  Best Response        Mixed Strategy NE         Summary
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• consider the following tables:

• these tables represent the same game with ordinal 
preferences: (C,RS)>(RS,RS)>(C,C)>(RS,C)

• these tables represent different games with vNM
preferences: e.g. compare sure outcome (RS,RS) with 
lottery ½*(C,C) + ½*(C,RS)  
2 = ½*1 + ½*3 3 > ½*1 + ½*4

2
1 C RS

C 1,1 3,0
RS 0,3 2,2

2
1 C RS

C 1,1 4,0
RS 0,4 3,3

vNM Preferences
Review  Best Response        Mixed Strategy NE         Summary
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Strategic game with vNM preferences:
• set of players
• for each player, a set of actions
• for each player, preferences regarding lotteries over 

action profiles can be represented by the expected value 
of the payoff function over action profiles

Note: if NE – ordinal;   if MSNE – vNM preferences

vNM Preferences
Review  Best Response        Mixed Strategy NE         Summary
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• von Neumann and Morgenstern preferences
• preferences regarding lotteries can be 

represented by the expected value of the payoff 
function

• Mixed strategy: player chooses a probability   
distribution (p1,p2,..,pN) over her set of actions 
rather than a single action

• α* is a MSNE if and only if
EU(αi) ≥ EU(αi,α*-i) for every αi of player I

Summary
Review  Best Response        Mixed Strategy NE         Summary
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