

Introduction to Game Theory Lecture 2

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

- Contact: kalk00@vse.cz
 <u>home.cerge-ei.cz/kalovcova/teaching.html</u>
- Office hours: Wed 7.30pm 8.00pm, NB339 or by email appointment
- Osborne, M. J. An Introduction to Game Theory Gibbons, R. – A Primer in Game Theory Suggested articles
- Important information on webpage
- Grading: Midterm 30%, Final 60%, Homework 10%, Experiments up to 5%

Economic Models & Games

- Game theory is about economic models
- Economic models help us understand behavior of agents, they do not tell us what their optimal action is
- Each game represents some economic situation (Prisoner's dilemma = Duopoly)
- By solving the game (finding equilibrium) we find plausible outcome of a given situation

Elements of Games

- Strategic game consists of
 - set of players
 - for each player set of actions
 - for each player set of preferences over the set of action profiles
 - preferences represented by payoff function
 - static games: players simultaneously chose actions normal form game representation (table)

Games - Classification

Course topics:

- Games of complete and perfect information
 - Static Games (Nash Equilibrium)
 - Dynamic Games (Backward Induction)
- Games of complete but imperfect information
 - Dynamic Games (Subgame perfect NE)
- Games of incomplete information
 - Static Games (Auctions)
 - Dynamic Games (Signaling)

Review

Nash Equilibrium

Summary

Plan for Today

...previously: "what are models?"... ...today: "how to solve them?"

- Elimination of strictly dominated strategies
- Nash Equilibrium

Iterative Elimination of Strictly Dominated Strategies

How to solve games?

- Consider the following game:
 - Two players
 - Each player chooses between two actions: A and B
 - Payoff for all outcomes is in the table below:

1 2	А	В
А	50,50	100,0
В	0,100	70,70

Dominated Strategies - What?

- Play A because it is always better, no matter what the other player chooses.
- Note: playing B could be reasonable if player knows the opponent and it is a repetitive game - it might be advantageous in the long term.
- But in this course, we only deal with one shot, non cooperative games.
- Repeated games, cheap talk, cooperation, etc are not part of this introductory course

Dominated Strategies - What?

- player i's action a strictly dominates her action b if u_i(a,a_{-i}) > u_i(b,a_{-i}) for every list a_{-i} of other players' actions
 - u_i is a payoff function that represents player i's preferences
 - $a_{-i} = \{a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_N\}$ actions of others players
- if any action strictly dominates the action b, we say that b is strictly dominated

Dominated Strategies - Why?

• how to "solve" the game (model)? what is a plausible outcome for a given game?

 Iterative elimination of dominated strategies provides insight to what is a plausible outcome of a game

Elimination of Strategies

- Iterative elimination of strictly dominated strategies:
 - rational players do not play strictly dominated actions, hence we can eliminate them
- common knowledge that all players are rational is required:
 - all the players know that all the players are rational, and that all the players know that all the players know that all the players are rational etc.
- the order of elimination does not affect the strategy or strategies we end up with

Prisoner's Dilemma

• Let's get back to Prisoner's Dilemma game:

 Iterative elimination of dominated strategies shows that (Confess, Confess) is likely outcome (consistent with evidence)

Elimination of Strategies

- 1. Right is dominated by Center
- 2. Down is dominated by Up
- 3. Left is dominated by Center
- 4. Plausible outcome is {Up,Center}

Party Game

• Consider the following party game where the payoff of two friends depends on whether they come to party early or late:

1 2	Early	Late
Early	10,10	0,3
Late	3,0	5,5

- No strategy is dominant => no elimination
- (Early, Early) is likely outcome of the game

Elimination of Strategies

- Pros:
 - simple just compare all pairs of strategies and you find if some are dominated
 - if there are many strategies, elimination makes game simpler

• Cons:

 is weak – take for example Party game – no strategy can be eliminated => no insight about plausible outcome of the game => we need something stronger...

Review

Nash Equilibrium

Summary

- The action profile (list of action of each player) a* is a Nash equilibrium if, for every player i and every action b_i of player i, a* is at least as good according to player i's preferences as the action profile (b_i,a*_{-i}) in which player i chooses b_i while every other player chooses a*_{-i}
- Equivalently, for every player i, u_i(a*)≥u_i(b_i,a*_{-i}) for every action b_i of player i, where u_i is a payoff function that represents player i's preferences

- Equivalently, the action profile a* is a Nash equilibrium if and only if every player's action is a best response to the other players' actions
- Translation: In Nash equilibrium, nobody can unilaterally improve their payoff, everybody is playing the best they can

Summary

Nash Equilibrium

What actions will be chosen by players in a strategic game?

© 2006 Encyclopædia Britannica, Inc.

Summary

- A Nash equilibrium (NE) is such combination of actions of all players that no player can do better by choosing a different action given that every other player sticks to NE action
- {Confess,Confess} is NE, because no prisoner can do better by switching to "Remain Silent" while their opponent plays "Confess"
- {Confess,Remain Silent} is not NE, because Prisoner B could do better by switching to "Confess" while his opponent plays "Confess"

Summary

Nash Equilibrium

What actions will be chosen by players in a strategic game?

© 2006 Encyclopædia Britannica, Inc.

How to Find Nash Equilibrium?

What actions will be chosen by players in a strategic game?

Note: our circles are **best responses**, that is why "circle method" leads to NE BR₁(C)=C; BR₁(S)=C; BR₂(C)=C; BR₂(S)=C;

Summary

Nash Equilibrium

Note, that the NE definition implies

- neither that a strategic game necessarily has a Nash equilibrium
- nor that it has at most one
- Possible outcomes:
 - no Nash Equilibrium*
 - one Nash Equilibrium
 - many Nash Equilibria

Summary

Nash Equilibrium

Prisoners' Dilemma Game:

1 2	Confess	Silent
Confess	1,1	3,0
Silent	0,3	2,2

One Nash Equilibrium: {Confess,Confess}

How to Find Nash Equilibrium?

Party Game:

1 2	Early	Late
Early	1010	0,3
Late	3,0	5,5

Two Nash Equilibria: {E,E} and {L,L} Players agree on which one is better BR₁(E)=E; BR₁(L)=L; BR₂(E)=E; BR₂(L)=L;

How to Find Nash Equilibrium?

Stag Hunt:

1 2	Stag	Hare
Stag	(22)	0,1
Hare	1,0	

Two Nash Equilibria: {S,S} and {H,H} Players agree on which one is better BR₁(S)=S; BR₁(H)=H; BR₂(S)=S; BR₂(H)=H;

Summary

Nash Equilibrium

Battle of Sexes Game:

1 2	Boxing	Shopping
Boxing	(21)	0,0
Shopping	0,0	(1,2)

Two Nash Equilibria: {B,B} and {S,S} Players disagree on which one is better BR₁(B)=B; BR₁(S)=S; BR₂(B)=B; BR₂(S)=S;

Summary

Nash Equilibrium

Matching Pennies:

1 2	Head	Tail
Head	1,-1	-1(1)
Tail	-1,1	1-1

No Nash Equilibria BR₁(H)=H; BR₁(T)=T; BR₂(H)=T; BR₂(T)=H;

How to Find Nash Equilibrium?

Yet another game:

One Nash Equilibrium: $\{T,L\}$ BR₁(L)= $\{T,B\}$; BR₁(M)=T; BR₁(R)=B; BR₂(T)= $\{L,R\}$; BR₂(B)=M;

Nash Equilibrium - Assumptions

- Each player chooses best available action
 - best action depends on other players' actions
- Each player has belief about other players' actions
 - derived from past experience playing the game
 - experience sufficient to know how opponents will behave
 - does not know action of her particular opponents
- Idealized circumstances:
 - for each player population of many such players
 - players are selected randomly from each population
 - players gain experience about "typical" opponents, but not any specific set of opponents

Elimination vs. Circle Method

We can find plausible outcome (Nash equilibrium) of the game by:

- Elimination of strictly dominated strategies
- Circle Method

How do these methods relate?

- Elimination requires common knowledge and sometimes is too imprecise (no strictly dominated strategies, no elimination, no prediction)
- We need something stronger Nash Equilibrium (found by Circle Method)
- IF there is a single NE, Elimination and Circle Method lead to the same outcome

Summary

Strict vs. Weak Dominance

Summary

Strict Dominance

- Definition: player i's action a_i strictly dominates her action b_i if u_i(a_i,a_{-i})>u_i(b_i,a_{-i}) for every list a_{-i} of the other players' actions, where u_i is a payoff function that represents player i's preferences
- Definition: If any action strictly dominates the action b_i, we say that b_i is strictly dominated

Review

Nash Equilibrium

Summary

Weak Dominance

- Definition: player i's action a_i weakly dominates her action b_i if u_i(a_i,a_{-i})≥u_i(b_i,a_{-i}) for every list a_{-i} of the other players' actions, where u_i is a payoff function that represents player i's preferences
- Definition: If any action weakly dominates the action b_i, we say that b_i is weakly dominated

Summary

Strict vs. Weak Dominance

1 2	Left	Center	Right
Up	1,2	11	0,2
Down	0,1	01	2,3

- Right strictly dominates Center
- Right weakly dominates Left
- Left weakly dominates Center

Strct vs. Nonstrict NE

- Strict NE:
 - requires that the equilibrium action is better than any other action (given that all other players stick to NE actions)
- Nonstrict NE:
 - requires that the equilibrium action is not worse than any other action (given that all other players stick to NE actions)

Summary

Strct vs. Nonstrict NE

Example:

If we eliminate T which is weakly dominated by B, and then eliminate L which is dominated by R we lose nonstrict NE {T,L}

Strct vs. Nonstrict NE

Note: Elimination of weakly dominated strategies leads to:

- strict Nash equilibria
- but can eliminate nonstrict Nash equilibria

That is why we only eliminate strictly dominated strategies

Summary

- Nash Equilibrium is a concept of a steady state in given situation
- No one can unilaterally improve their payoff, therefore no one has incentive to deviate from equilibrium action
- Equilibrium behavior is based on general knowledge and experience with similar players and situations; not on particular circumstances

Summary

- We can find Nash equilibria by:
 - Elimination of strictly dominated strategies
 - "Circle Method"
- Elimination method is sometimes imprecise, NE (Circle Method) is stronger.