

Introduction to Game Theory Lecture 13

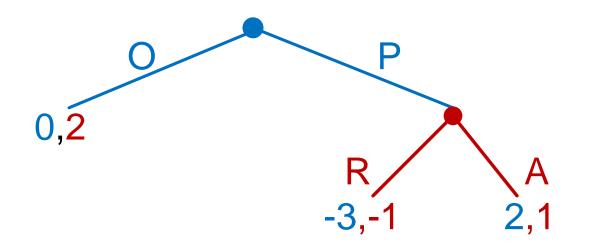
Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

static games

- perfect information: NE
- imperfect information: (Bayesian) NE

• dynamic games

- perfect information: SPNE
- imperfect information: weak perfect Bayesian equilibrium



Nash Equilibrium

Dating site:

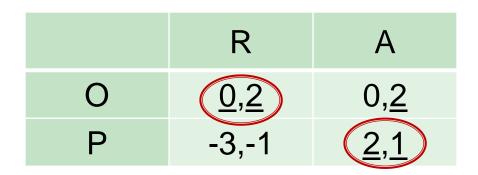
NE

- •P1: Participate (P), Stay Out (O)
- P2: Accept a date (A), Reject (R)

BNE

Games

Summary


There are two NE in this game:

WPBE

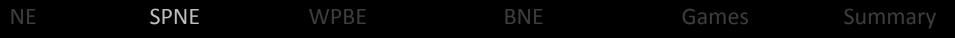
•(O,R) -> (0,2) •(P,A) -> (2,1)

SPNE

NE

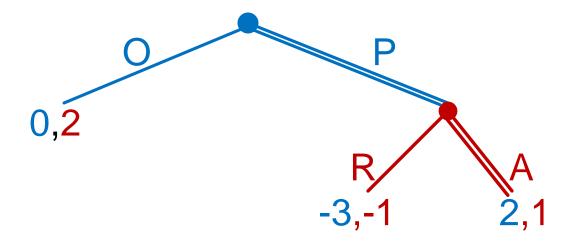
 (O,R) is not a "credible threat" – it is never optimal to Reject after Player 1 Participates WPBF

BNE

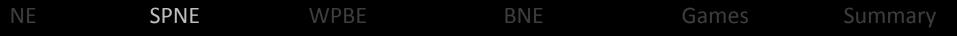

Games

Summarv

NE

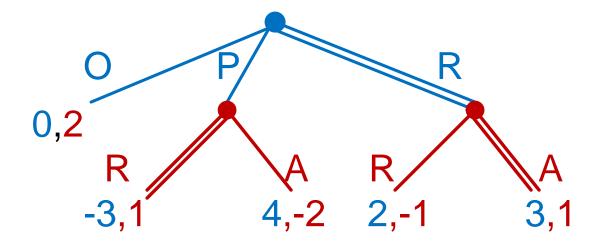

SPNE

- What it is: every strategy is the best response to all the other strategies; i.e. nobody can gain anything by changing the strategy unilaterally
- How to find it: construct a payoff table; find best responses; find set of actions where every player is playing best response to other(s)
- Problems: NE concept has a low predictive power, since generally we can have too many NE in a game; furthermore, this concept sometimes gives not sensible predictions (non-credible threats)
- Solution: find Subgame perfect Nash equilibrium



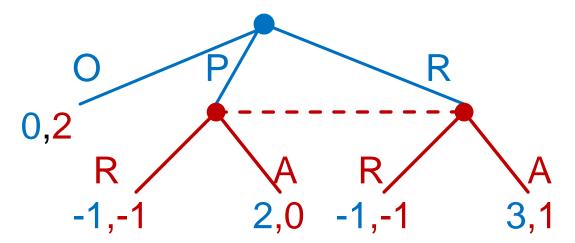
Dating site:

- •P1: Participate (P), Stay Out (O)
- P2: Accept a date (A), Reject (R)



SPNE – only reasonable NE stays – (P,A); non sensible is eliminated

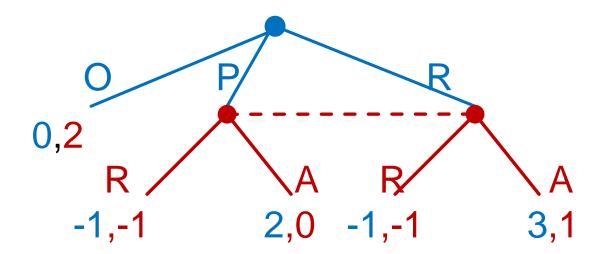
Dating site – more complex:


- •P1: Stay Out (O), Real Picture (R), Photoshop (P)
- P2: Accept a date (A), Reject (R)

SPNE: (R,RA) – Specify action of each player in each node!!!

Dating site – even more complex:

- •P1: Stay Out (O), Real Picture (R), Photoshop (P)
- P2: Accept a date (A), Reject (R)
- •P2 can not tell Real picture from Photoshop

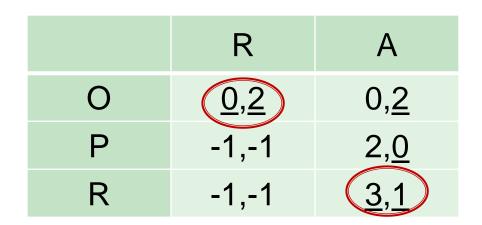

All NE are SPNE as well (only one subgame)

- What it is: optimal actions of all players at every point in the game tree (in every subgame)
- How to find it: backward induction
- Problems: SPNE concept can not be used in games with imperfect information (information sets)
- Solution: weak Perfect Bayesian Equilibrium

Weak Perfect Bayesian Equilibrium

Dating site – even more complex:

- •P1: Stay Out (O), Real Picture (R), Photoshop (P)
- P2: Accept a date (A), Reject (R)
- •P2 can not tell Real picture from Photoshop



All NE are SPNE as well (only one subgame)

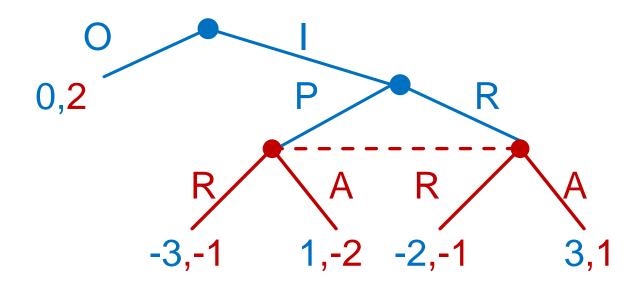
NE SPNE WPBE BNE Games Summary WPBE BNE Games Summary WPBE BNE Games Summary

There are two NE (and SPNE) in this game:

•(O,R) -> (0,2) •(R,A) -> (3,1)

 (O,R) is not a "credible threat" – it is never optimal to Reject after Player 1 plays P or R (A is dominant)

Weak Perfect Bayesian Equilibrium


There are two NE in this game:

- •(O,R) -> (0,2)
- •(R,A) -> (3,1)
- Rejecting is never optimal, there is no system of beliefs based on which P2 chooses this action => (O,R) is not WPBE
- (R,A) what is a corresponding system of beliefs?
 - this information set is reached (P1 plays R), so beliefs are determined by Bayes rule -> P2 believes that he is in the right node with Prob=1

Weak Perfect Bayesian Equilibrium

Dating site – even more complex 2:

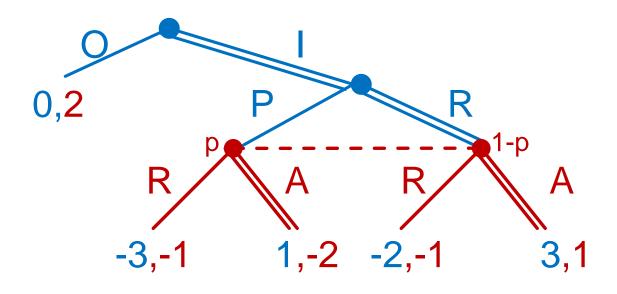
- •P1: Out (O) or In (I), Real Picture (R), Photoshop (P)
- P2: Accept a date (A), Reject (R)
- •P2 can not tell Real picture from Photoshop

NE SPNE WPBE BNE Games Summary

Weak Perfect Bayesian Equilibrium

There are three NE in this game:

- •(OP,R) -> (0,2)
- •(OR,R) -> (0,2)
- •(IR,A) -> (3,1)


	R	А
OP	<u>0,2</u>	0, <u>2</u>
OR	<u>0,2</u>	0, <u>2</u>
IP	-3,- <u>1</u>	1,-2
IR	-2,-1	3,1

• are all of them WPBE as well? If yes, what is the corresponding system of beliefs?

NE SPNE WPBE BNE Games Summary WPBE BNE Games Summary

NE1: (IR,A) – how about beliefs?

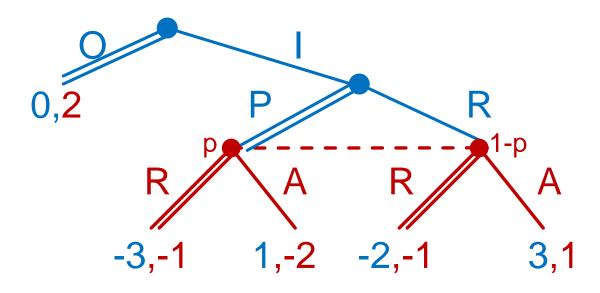
- information set is reached => beliefs are given by actions of P1 and determined by Bayes rule:
- •p=0, 1-p=1

Weak Perfect Bayesian Equilibrium

BNE

Games

Summary


NE2: (OP,R) – how about beliefs?

WPBE

NE

SPNE

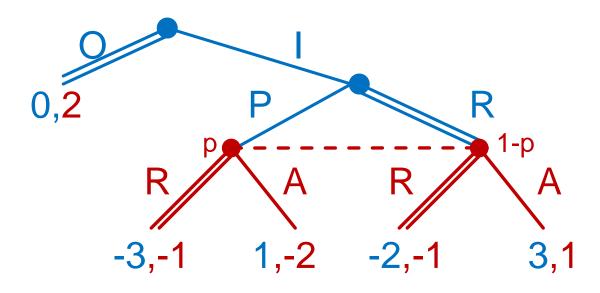
- information set is not reached => beliefs are arbitrary, sequential rationality must be satisfied (given beliefs of P2, his actions are optimal)
- for example: p=1,1-p=0 (any p>2/3) R is optimal

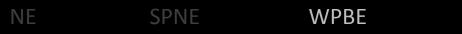
Weak Perfect Bayesian Equilibrium

BNE

Games

Summary

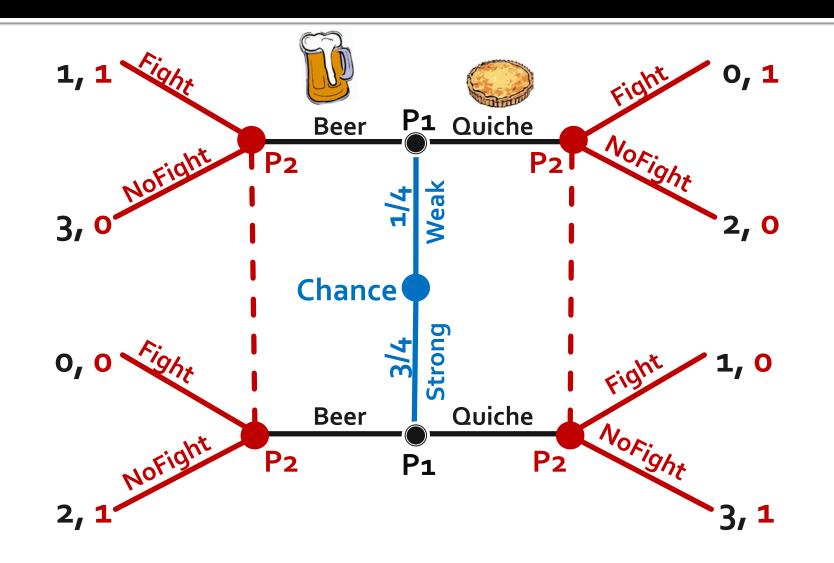

NE3: (OR,R) – how about beliefs?


WPBE

NE

SPNE

- information set is not reached => beliefs are arbitrary, sequential rationality must be satisfied (given beliefs of P2, his actions are optimal)
- for example: p=1,1-p=0 (any p>2/3) R is optimal



BNE

Games

Summary

Beer or Quiche

Beer or Quiche

- We analyze all for possible equilibria:
 - Separating equilibrium 1: Weak-Quiche, Strong-Beer
 - Separating equilibrium 2: Weak-Beer, Strong-Quiche
 - Pooling equilibrium 1: Weak-Beer, Strong-Beer
 - Pooling equilibrium 2: Weak-Quiche, Strong-Quiche

In each case:

- 1. Start with Player 1 actions
- 2. Determine Player 2's beliefs
- 3. Find Player 2's optimal response
- 4. Check if Player 1's action is optimal

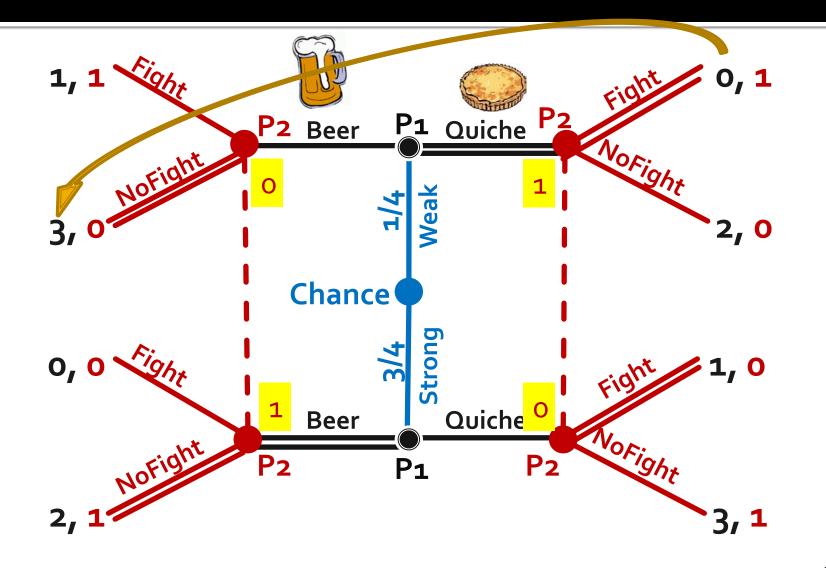
BNE

Games

Summary

• P1: Strong->Beer; Weak->Quiche

WPBE


NE

SPNE

- P2: optimal response to that is: if Beer->NoFight; if Quiche->Fight
- Weak P1 wants to deviate => no WPBE

WPBE

NE

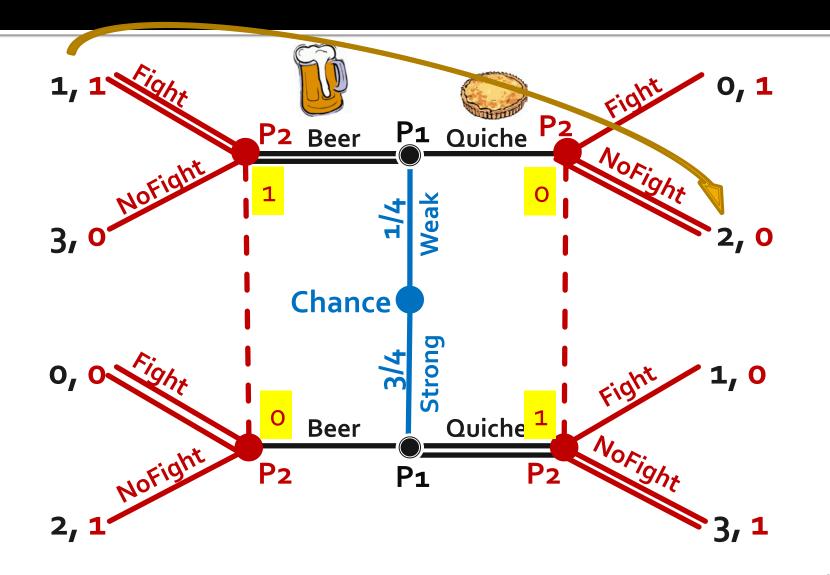
BNE

Games

Summary

• P1: Strong->Quiche; Weak->Beer

WPBE


NE

SPNE

- P2: optimal response to that is: if Beer->Fight; if Quiche->NoFight
- Weak P1 wants to deviate => no WPBE

WPBE

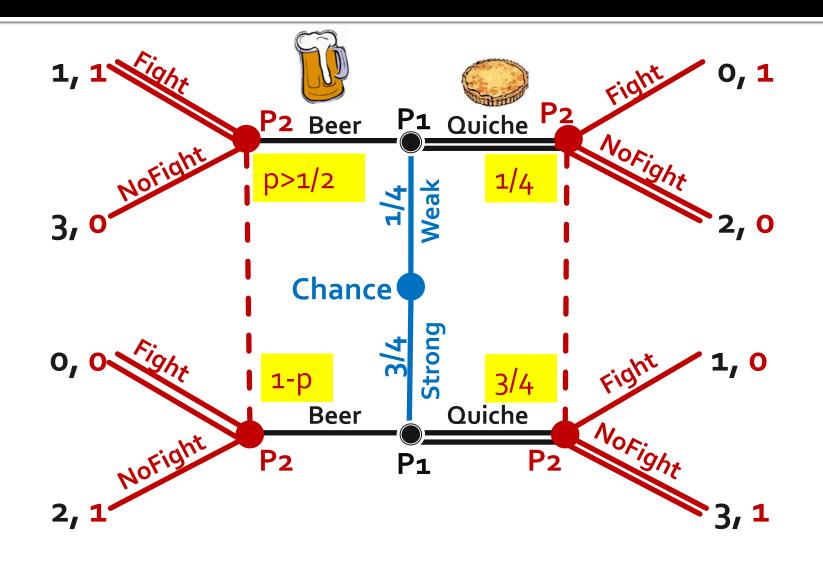
NE

BNE

Games

Summary

• P1: Strong->Quiche; Weak->Quiche


WPBE

- P2: optimal response to that: NoFight if Quiche
- Strong Player 1 gets the highest possible payoff here, whatever Player 2 decides to do in the left information set, Strong P1 has no regrets.
- To make Weak P1 have no regrets, the action in the left information set has to be Fight.
- For Fight to be optimal in the left information set, EP(Fight) has to be larger than EP(NoFight): p>1/2
- This is WPBE.

SPNE

NE

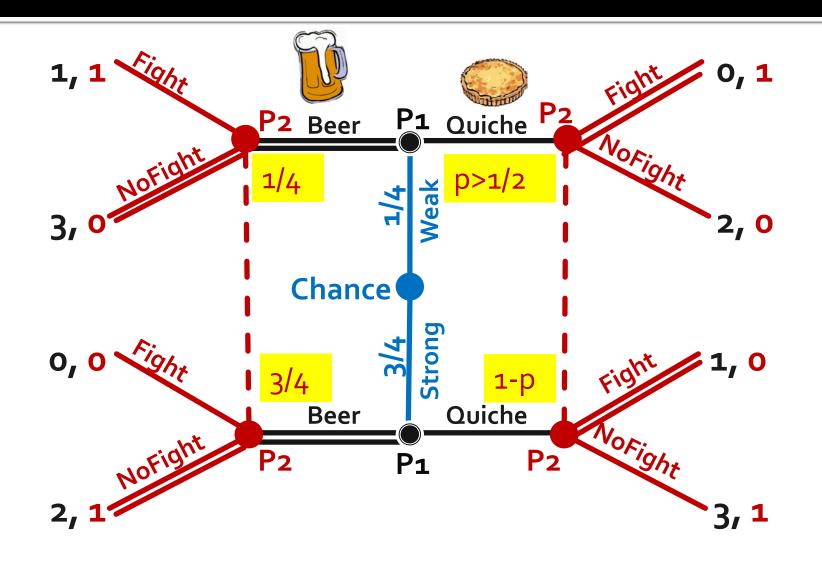
WPBE

BNE

Games

Summary

• P1: Strong->Beer; Weak->Beer


WPBE

- P2: optimal response to that: NoFight if Beer
- Weak Player 1 gets the highest possible payoff here, whatever Player
 2 decides to do in the left information set, Weak P1 has no regrets.
- To make Strong P1 have no regrets, the action in the right information set has to be Fight.
- For Fight to be optimal in the right information set, EP(Fight) has to be larger than EP(NoFight): p>1/2
- This is WPBE.

SPNE

NE

WPBE

Weak Perfect Bayesian Equilibrium

- What it is: optimal actions of all players at every point in the game tree and system of consistent beliefs such the actions are sequentially rational
- How to find it: find NE first, then look for beliefs: information set is reached - Bayes; information set is not reach – anything, consistent with own actions; alternatively, analyze all possible pooling and separating equilibria one by one
- Problems: WPBE puts no restrictions on beliefs in information sets which are not reached – sometimes leads to "unreasonable" beliefs
- Solution: Sequential Equilibrium (not covered in our course)

Bayesian Nash Equilibrium

- What it is: Nash equilibrium in games with uncertainty about type of opponent or state
- every strategy is the best response to all the other strategies of all the other types of players or in all possible states
- How to find it: construct a new big payoff table with expected payoffs (rather than certain payoffs); find Nash equilibriua in a standard way

- Theory vs. Real Life
- Usually the actions of players are far from the theoretical prediction

(Dictator Game, Ultimatum Game, Beauty Contest Game, Public Good Game, Pirate Game, Centipede Game, etc.)

- Reasons:
 - People aren't always rational
 - People are overconfident
 - People are reluctant to change their minds
 - People care about fairness as demonstrated by the ultimatum game
 - People are inconsistent over time

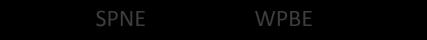
- Theory vs. Real Life
- Game Theory does not tell us what people do
- It provides a new way of thinking about strategic interactions
- It provides a framework for analyzing these situations

BNE

Games

Cooperative Games

WPBE


Coalitions

SPNE

NE

- Cheap Talk
- Repeated Games
 - Folk Theorem
 - Reputation
 - Grim Trigger Strategy
- Nash Bargaining
 - Rubinstein, Osborne
- Auctions

Summary

BNE

Games

Summary

Final Exam

Materials:

NE

- Lecture notes, homeworks
- Osborne chapters: 1,2,4,5,9,10
- Gibbons chapters: all four, relevant parts
- Office hours by email appointment