

Introduction to Game Theory Lecture 12

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

Review

- static games
- perfect information: NE
- imperfect information: (Bayesian) NE
- dynamic games
- perfect information: SPNE
- imperfect information: weak perfect Bayesian equilibrium

Weak Perfect Bayesian Equilibrium

- weak perfect Bayesian equilibrium consists of equilibrium strategies and beliefs
Definition: A wPBE equilibrium consists of behavioral strategies and beliefs systems satisfying following conditions:

1. Sequential rationality - Each players' strategy is optimal whenever she has to move, given her belief and the other players' strategies
2. Consistency of beliefs with strategies - Each player's belief is consistent with strategy profile (behavioral strategies of all players)

Beer or Quiche Game

- Beer or Quiche is a typical example of a signaling game: P1 sends a signal, P2 reacts
- nature chooses the type of P1: Weak, Strong with certain probabilities
- P1 chooses his breakfast: Beer or Quiche
- P2 does not know the type of P1 but observes what he had for breakfast. He then decides whether to pick up a fight with P1

Beer or Quiche

- nature chooses the type of P1: Weak, Strong with probability r, 1-r
- the Weak type likes quiche for his breakfast, the Strong type likes beer; P1 chooses his breakfast
- P2 does not know the type of P1 but observes what he had for breakfast. He then decides whether to pick up a fight with P1
- P1 gets 1 point if he had his favorite meal, and gets additional 2 points if there was no fight
- P2 gets 1 point if he fought the Weak type or if he did not fight the Strong

Beer or Quiche

Beer or Quiche

Separating equilibrium: Each type of sender (P1) chooses a different action, so the receiver (P2) knows the sender's type (e.g.: Strong->Beer; Weak->Quiche)

Pooling equilibrium: All types of sender (P1) choose the same action, so receiver (P 2) has no clue about the sender's type (e.g.: Strong->Beer; Weak->Beer)

Partially separating/pooling equilibrium: Some types of sender send one message; some types of sender mix the messages (e.g.: Strong->Beer; Weak->mix)

Separating Equilibrium 1

- P1: Strong->Beer; Weak->Quiche
- P2: optimal response to that is: if Beer->NoFight; if Quiche->Fight
- not an equilibrium, Weak wants to deviate

Separating Equilibrium 1

Separating Equilibrium 2

- P1: Strong->Quiche; Weak->Beer
- P2: optimal response to that is: if Beer->Fight; if Quiche->NoFight
- not an equilibrium, Weak wants to deviate

Separating Equilibrium 2

Pooling Equilibrium 1

- P1: Strong->Beer; Weak->Beer
- P2: optimal response to that:

NoFight if Beer
Fight if Quiche (so P1 - Weak does not deviate)

- WPBE:
if Beer, $\operatorname{Pr}($ Weak $)=0.1 ; \operatorname{Pr}($ Strong $)=0.9$
if Quiche, $\operatorname{Pr}($ Weak $)=p ; \operatorname{Pr}($ Strong $)=1-p ;$
where $p>1 / 2$

Pooling Equilibrium 1

Pooling Equilibrium 2

- P1: Strong->Quiche; Weak->Quiche
- P2: optimal response to that:

NoFight if Quiche
Fight if Beer (so P1-Strong does not deviate)
if Quiche, $\operatorname{Pr}($ Weak $)=0.1 ; \operatorname{Pr}($ Strong $)=0.9$ if Beer, $\operatorname{Pr}($ Weak $)=p ; \operatorname{Pr}($ Strong $)=1-p ;$ where $p>1 / 2$

Pooling Equilibrium 2

Beer or Quiche

There are two pooling equilibria in this game:

- P1: Strong->Quiche; Weak->Quiche
- P2: if Beer->Fight; if Quiche->NoFight
if Beer: $\operatorname{Pr}($ Strong $)=1-p ; \operatorname{Pr}($ Weak $)=p, p>1 / 2$
if Quiche: $\operatorname{Pr}($ Strong $)=0.9 ; \operatorname{Pr}($ Weak $)=0.1$
- P1: Strong->Beer; Weak->Beer
- P2: NoFight if Beer, Fight if Quiche if Beer, $\operatorname{Pr}($ Weak $)=0.1 ; \operatorname{Pr}$ (Strong) $=0.9$ if Quiche, $\operatorname{Pr}($ Weak $)=p ; \operatorname{Pr}($ Strong $)=1-p, p>1 / 2$

Modified Beer or Quiche

- Beer or Quiche is a typical example of a signaling game: P1 sends a signal, P2 reacts
- nature chooses the type of P1: Weak, Strong with certain probabilities
- P1 chooses his breakfast: Beer or Quiche
- P2 does not know the type of P1 but observes what he had for breakfast. He then decides whether to pick up a fight with P1

Modified Beer or Quiche

Separating Equilibrium 1

- P1: Strong->Quiche; Weak->Beer
- P2: optimal response to that is: if Beer->Fight; if Quiche->NoFight
- not an equilibrium, Strong wants to deviate

Separating Equilibrium 1

Separating Equilibrium 2

-P1: Strong->Beer; Weak->Quiche

- P2: optimal response to that is: if Beer->Fight; if Quiche->Fight
- No type of P1 wants to deviate
- wPBE:
-P1: Strong->Beer; Weak->Quiche
- P2: if Beer->Fight; if Quiche->Fight if Beer: $\operatorname{Pr}($ Strong $)=1 ; \operatorname{Pr}($ Weak $)=0$ if Quiche: $\operatorname{Pr}($ Strong $)=0 ; \operatorname{Pr}($ Weak $)=1$

Separating Equilibrium 2

Pooling Equilibrium 1

-P1: Strong->Quiche; Weak->Quiche

- P2: optimal response to that: NoFight if Quiche
- not an equilibrium, Weak wants to deviate, irrespective of P2's strategy after observing Beer

Pooling Equilibrium 1

Pooling Equilibrium 2

-P1: Strong->Beer; Weak->Beer
-P2: optimal response to that:
Fight if Beer
NoFight if Quiche (so P1-Weak does not deviate)
if Beer, $\operatorname{Pr}($ Weak $)=0.3 ; \operatorname{Pr}($ Strong $)=0.7$ if Quiche, $\operatorname{Pr}($ Weak $)=p ; \operatorname{Pr}($ Strong $)=1-p$; where $\mathrm{p}<2 / 3$

Pooling Equilibrium 2

Modified Beer or Quiche

There is one separating and one pooling equilibrium in this game:

- P1: Strong->Beer; Weak->Quiche
- P2: if Beer->Fight; if Quiche->Fight
if Beer: $\operatorname{Pr}($ Strong $)=1 ; \operatorname{Pr}($ Weak $)=0$ if Quiche: $\operatorname{Pr}($ Strong $)=0 ; \operatorname{Pr}($ Weak $)=1$
- P1: Strong->Beer; Weak->Beer
- P2: Fight if Beer, NoFight if Quiche if Beer, $\operatorname{Pr}($ Weak $)=0.3 ; \operatorname{Pr}($ Strong $)=0.7$ if Quiche, $\operatorname{Pr}($ Weak $)=p ; \operatorname{Pr}($ Strong $)=1-p ;$ where $p<2 / 3$

Summary

How to find wPBE?

- Analyze the game player by player, strategy by strategy (if game is simple enough)
- start with one player, one strategy
- compute beliefs and optimal responses of others
- check seq. rationality and consistency of beliefs
- Find NE first, look for the system of beliefs that can support each NE
- normal form game - NE
- compute beliefs
- check seq. rationality and consistency of beliefs
- In Signaling games
- analyze all possible pooling equilibria
- analyze all possible separating equilibria

