

Introduction to Game Theory Lecture 10

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

Preview

- So far:

Games with perfect and complete information

- structure of the game is known
- players' payoffs are known
- everything is a common knowledge
- Today:

Bayesian games

- model situations in which player is imperfectly informed about other players' preferences

Preview

Technically...

- So far:
- Games with perfect and complete information
- optimal behavior involves choice of actions
- Today:
- Bayesian games
- optimal behavior involves choice of actions AND beliefs about other player's type/preferences

Bayesian Games

- Bayesian games:
- auctions: value of a given object to other people is unknown
- firms: cost function of other firms is unknown
- Example: modified Battle of Sexes game
- two possible types of one player
- Homer is not sure whether
- Marge wants to go out with him
- Marge wants to avoid him
- As before, Marge knows Homer's preferences

Modified Battle of Sexes

- Homer (based on experience):
- with probability $1 / 2$ Marge wants to meet him
-> playing left game
- with probability $1 / 2$ Marge wants to avoid him
-> playing right game

Modified Battle of Sexes

- Marge knows if she wants to meet or avoid Homer
- Homer does not know what type Marge is
-To make rational decision, Homer has to form beliefs about the action of each type of Marge (difference between games with complete and incomplete information)
- Given these beliefs he computes expected payoff of each action and chooses optimally

Expected Payoff

Example: if Homer believes that Marge who wants to meet him chooses B and Marge who wants to avoid him chooses B , then:

- Homer: B -> 0.5*2+0.5*2 = 2

Expected Payoff

Example 2: if Homer believes that Marge who wants to meet him chooses B and Marge who wants to avoid him chooses S , then:

- Homer: B -> $0.5^{*} 2+0.5^{*} 0=1$
- Homer: S -> 0.5* $0+0.5 \star 1=0.5$

Expected Payoff

- Similarly, we can find expected payoff of all combinations of actions for Homer and Marge (columns B,B and B,S are derived on previous slides)

H	M	B,B	B,S	S,B
B	2	1	1	0
S	0	$1 / 2$	$1 / 2$	1

Bayesian Games - NE

- For this type of game, Nash Equilibrium is:
-the action of player 1 is optimal, given the actions of the two types of player 2 (and player 1's belief about the state)
- the action of each type of player 2 is optimal, given the action of player 1
- given Homer's beliefs about probability of Marge wanting to meet or avoid him, he behaves optimally
- Marge behaves optimally, whether she wants to meet Homer or avoid him

Bayesian Games - NE

- we analyze this type of Bayesian game as if there where three players: Homer, Marge - meet, Marge - avoid
- Marge knows her type, but Homer does not know Marge's type he needs to specify his optimal action given both possibilities

Bayesian Games - NE

- game can be represented in one table
- first number in each cell represents Homer's expected payoff, second number is payoff of $1^{\text {st }}$ type Marge and the third one payoff of $2^{\text {nd }}$ type Marge

	M	B, B	B, S	S, B	S, S
H					
B	$2,1,0$	$1,1,2$	$1,0,0$	$0,0,2$	
S	$0,0,1$	$1 / 2,0,0$	$1 / 2,2,1$	$1,2,0$	

Bayesian Games - NE

- game can be represented in one table
- first number in each cell represents Homer's expected payoff, second number is payoff of $1^{\text {st }}$ type Marge and the third one payoff of $2^{\text {nd }}$ type Marge

Bayesian Games - NE

- interpretation of NE (B, (B,S)):
- given Homer's beliefs and actions of both types of Marge, Homer is playing the best response
- given Homer's action, both types of Marge are playing best response

				c
$\mathrm{H}^{\text {M }}$	B, B	B,S	S,B	S,S
B	2,1,0	12	1,0,0	0,0,2
S	0,0,1	1/2, 0,0	$1 / 2,2,1$	1,2,0

Bayesian Games - NE

- interpretation of NE if Marge is the 1st type:
- Marge wants to meet Homer and chooses B
- Homer chooses B and believes that 1st type Marge chooses B and the 2nd type Marge chooses S

Bayesian Games - NE

- interpretation of NE if Marge is the 2nd type:
- Marge wants to avoid Homer and chooses S
- Homer chooses B and believes that 1st type Marge chooses B and the 2nd type Marge chooses S

Too Much Information Hurts

- single-person decision problem - player cannot be worse off if she has more information: if she wishes, she can ignore the information
- strategic game - if a player has more information and the other players know that she has it she may be worse off
- following game has two possible states, each player believes that states S1 and S2 are equally likely

S1	L	M	R	S2	L	M	R
T	1,4	1,0	1,6	T	1,4	1,6	1,0
B	2,16	0,0	0,24	B	2,16	0,24	0,0

Too Much Information Hurts

Too Much Information Hurts

If P 2 believes that P 1 will choose T :
$E P(L)=1 / 2^{*} 4+1 / 2^{*} 4=4 \quad E P(M)=1 / 2^{*} 0+1 / 2^{*} 6=3$
$E P(R)=1 / 2^{*} 6+1 / 2^{*} 0=3$
If P 2 believes that P 1 will choose B :
$E P(\mathrm{~L})=1 / 2^{*} 16+1 / 2^{*} 16=16 \quad \mathrm{EP}(\mathrm{M})=1 / 2^{*} 0+1 / 2^{*} 24=12$
$E P(R)=1 / 2^{*} 24+1 / 2^{*} 0=12$
probability $=1 / 2 \quad$ probability $=1 / 2$

S1	L	M	R	S2	L	M	R
T	1,4	1,0	1,6	T	1,4	1,6	1,0
B	2,16	0,0	0,24	B	2,16	0,24	0,0

Too Much Information Hurts

S1	L	M	R	S2	L	M	R
T	1,4	1,0	1,6	T	1,4	1,6	1,0
B	2,16	0,0	0,24	B	2,16	0,24	0,0

No player can distinguish the state, they believe that there is just one uninformed type of the other player

EPs	L	M	R
T	1,4	1,3	1,3
B	2,16	0,12	0,12

Too Much Information Hurts

-When we look at the table with expected payoffs, we can see, that player 2 has dominant strategy to play L, no matter what is the player 1's action

- If no player has information about the state, there is a single NE in this game: (B, L)

EPs	L	M	R
T	1,4	1,3	1,3
B	2,16	0,12	0,12

Too Much Information Hurts

Now, consider that Player 2 can distinguish between two states

Player 1 now believes that there are two types of Player 2 (Left, and Right table) with equal probabilities
probability $=1 / 2$

S1	L	M	R	S2	L	M	R
T	1,4	1,0	1,6	T	1,4	1,6	1,0
B	2,16	0,0	0,24	B	2,16	0,24	0,0

Too Much Information Hurts

Each type of Player 2 has a dominant action:

- For first type of player 2 it is best to play R, no matter of what is P1's action
- For second type of player 2 it is best to play M, no matter what is P1's action
probability $=1 / 2$

S1	L	M	R
T	1,4	$1, \phi$	1,6
B	$2,1 母$	$0, \phi$	0,24

probability $=1 / 2$

S2	L	M	R
T	1,4	1,6	$1, \emptyset$
B	2,16	0,24	$0, \emptyset$

Too Much Information Hurts

If Player 1 believes that first type Player 2 chooses R and the second type of Player 2 chooses M :

- $\operatorname{EP}(\mathrm{T})=1 / 2^{*} 1+1 / 2^{*} 1=1$
- $E P(B)=1 / 2^{*} 0+1 / 2^{*} 0=0$
- And the NE in this game is: $(T,(R, M))$
probability $=1 / 2$

S1	L	M	R	S2	L	M	R
T	1,4	$1, \phi$	1,6	T	1,4	1,6	$1, \phi$
B	2,16	$0, \phi$	0,24	B	2,16	0,24	$0, \phi$

Too Much Information Hurts

Comparison of outcomes
No information about state:

- $\mathrm{NE}=(\mathrm{B}, \mathrm{L})$
- Equilibrium payoff:
- Player 1: 2
-Player 2: 16 (both types)
Information about state:
- $N E=(T,(R, M))$
- Equilibrium payoff:
- Player 1: 1
- Player 2: 6 (both types)

Too Much Information Hurts

Comparison of outcomes

When Player 2 knows her type (knows the state), she optimally tailors her actions to the state which induces Player 1 to choose T rather than B and both players are worse off.

Note that this result is not general and depends on choice of payoffs of both players.

Modified Prisoner's dilemma

- Player 1 knows that:
- with probability $2 / 3$ Prisoner 2 is rational -> playing left game
- with probability $1 / 3$ Prisoner 2 is super nice -> playing right game

是			是		
1^{2}	C	RS	12	C	RS
C	1,1	3,0	C	1,1	3,3
RS	0,3	2,2	RS	0,0	2,2

Expected Payoff

Example: if Prisoner 1 believes that rational Prisoner 2 chooses C and super nice Prisoner 2 chooses RS, then:

- Prisoner 1: C -> $2 / 3^{*} 1+1 / 3 * 3=5 / 3$
- Prisoner 2: RS $->2 / 3^{*} 0+1 / 3^{*} 2=2 / 3$

Expected Payoff

- Similarly, we can find expected payoff of all action profiles:

12	C	RS		2	C	
C	(1) 1	3. 0		C		
RS	(0) 3	(2.) 2		RS		(
1	12	C, C	C,RS	RS,C		S,RS
	C	(1.) 1,1	(13) 1,3 (13) 0,1			3. 0,3
	RS	(0.) 3,0	(113) 3,2	(413) 2,0		2. 2,2

Bayesian NE

- Similarly, we can find expected payoff of all action profiles:

12		C	RS		1	2	C
C		1,1	3,0		C		1,1
RS		0,3	2,2		RS		0,0
	1	2	C, C		C,RS	RS,C	RS,RS
	C		1,1,1	5	5/3,1,3	7/3,0,1	3,0,3
	RS		0,3,0		2/3,3,2	4/3,2,0	2,2,2

Summary

- Bayesian games - information is incomplete (several possible states, types)
- How to find NE in Bayesian games:
- consider each type as an individual player - given the beliefs, compute expected payoffs - find NE in this game

