

Introduction to Game Theory Lecture 10

Disclaimer: this presentation is only a supporting material and is not sufficient to master the topics covered during the lecture. Study of relevant books is strongly recommended.

Preview

• So far:

Games with perfect and complete information

- structure of the game is known
- players' payoffs are known
- everything is a common knowledge
- Today:

Bayesian games

 model situations in which player is imperfectly informed about other players' preferences

Preview

Technically...

- So far:
 - Games with perfect and complete information
 - optimal behavior involves choice of actions
- Today:
 - Bayesian games
 - optimal behavior involves choice of actions AND beliefs about other player's type/preferences

Bayesian Games

- Bayesian games:
 - auctions: value of a given object to other people is unknown
 - firms: cost function of other firms is unknown
- Example: modified Battle of Sexes game
 - two possible types of one player
 - Homer is not sure whether
 - Marge wants to go out with him
 - Marge wants to avoid him
 - As before, Marge knows Homer's preferences

Modified Battle of Sexes

- Homer (based on experience):
 - with probability ½ Marge wants to meet him
 -> playing left game
 - with probability 1/2 Marge wants to avoid him
 - -> playing right game

Modified Battle of Sexes

- Marge knows if she wants to meet or avoid Homer
- Homer does not know what type Marge is
- To make rational decision, Homer has to form beliefs about the action of each type of Marge (difference between games with complete and incomplete information)
- Given these beliefs he computes expected payoff of each action and chooses optimally

Example: if Homer believes that Marge who wants to meet him chooses B and Marge who wants to avoid him chooses B, then:

Homer: B -> 0.5*2+0.5*2 = 2
Homer: S -> 0.5*0+0.5*0 ≤ 0

Example 2: if Homer believes that Marge who wants to meet him chooses B and Marge who wants to avoid him chooses S, then:

- Homer: B -> 0.5*2+0.5*0 = 1
- Homer: S -> 0.5*0+0.5*1 = 0.5

• Similarly, we can find expected payoff of all combinations of actions for Homer and Marge (columns B,B and B,S are derived on previous slides)

M H	B,B	B,S	S,B	S,S
В	2	1	1	0
S	0	1/2	1/2	1

- For this type of game, Nash Equilibrium is:
 - the action of player 1 is optimal, given the actions of the two types of player 2 (and player 1's belief about the state)
 - the action of each type of player 2 is optimal, given the action of player 1
- given Homer's beliefs about probability of Marge wanting to meet or avoid him, he behaves optimally
- Marge behaves optimally, whether she wants to meet Homer or avoid him

- we analyze this type of Bayesian game as if there where three players: Homer, Marge meet, Marge avoid
- Marge knows her type, but Homer does not know Marge's type he needs to specify his optimal action given both possibilities

- game can be represented in one table
- first number in each cell represents Homer's expected payoff, second number is payoff of 1st type Marge and the third one payoff of 2nd type Marge

- game can be represented in one table
- first number in each cell represents Homer's expected payoff, second number is payoff of 1st type Marge and the third one payoff of 2nd type Marge

- interpretation of NE (B,(B,S)):
 - given Homer's beliefs and actions of both types of Marge, Homer is playing the best response
 - given Homer's action, both types of Marge are playing best response

- interpretation of NE if Marge is the 1st type:
 - Marge wants to meet Homer and chooses B
 - Homer chooses B and believes that 1st type Marge chooses B and the 2nd type Marge chooses S

- interpretation of NE if Marge is the 2nd type:
 - Marge wants to avoid Homer and chooses S
 - Homer chooses B and believes that 1st type Marge chooses B and the 2nd type Marge chooses S

- single-person decision problem player cannot be worse off if she has more information: if she wishes, she can ignore the information
- strategic game if a player has more information and the other players know that she has it she may be worse off
- following game has two possible states, each player believes that states S1 and S2 are equally likely

S1	L	Μ	R	S2	L	Μ	R
Т	1,4	1,0	1,6	Т	1,4	1,6	1,0
В	2,16	0,0	0,24	В	2,16	0,24	0,0

If P1 (row) believes that P2 (column) will choose L: $EP(T) = \frac{1}{2}*1 + \frac{1}{2}*1 = 1$ $EP(B) = \frac{1}{2}*2 + \frac{1}{2}*2 = 2$ If P1 believes that P2 will choose M: $EP(T) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$ $EP(B) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 = 0$ If P1 believes that P2 will choose R: $EP(B) = \frac{1}{2}*0 + \frac{1}{2}*0 = 0$ $EP(T) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$ probability $= \frac{1}{2}$ probability = $\frac{1}{2}$ S2 **S1** R Μ R M Т 1,0 1,6 Т 1/)4 1,6 1,0 В 0,24 16 0,0 В 0,24 0,0 6

If P2 believes that P1 will choose T: $EP(L) = \frac{1}{2}*4 + \frac{1}{2}*4 = 4$ $EP(M) = \frac{1}{2}*0 + \frac{1}{2}*6 = 3$ $EP(R) = \frac{1}{2}*6 + \frac{1}{2}*0 = 3$

If P2 believes that P1 will choose B: $EP(L) = \frac{1}{2}*16 + \frac{1}{2}*16 = 16$ $EP(M) = \frac{1}{2}*0 + \frac{1}{2}*24 = 12$ $EP(R) = \frac{1}{2}*24 + \frac{1}{2}*0 = 12$

probability = $\frac{1}{2}$				probability = $\frac{1}{2}$			
S1	L	М	R	S2	L	Μ	R
Т	1,4	1,0	1,6	Т	1,4	1,6	1,0
В	2,16	0,0	0,24	В	2,16	0,24	0,0

S1	L	Μ	R	S2	L	М	R
Т	1,4	1,0	1,6	Т	1,4	1,6	1,0
В	2,16	0,0	0,24	В	2,16	0,24	0,0

No player can distinguish the state, they believe that there is just one uninformed type of the other player

EPs	L	Μ	R
Т	1,4	1,3	1,3
В	2,16	0,12	0,12

- When we look at the table with expected payoffs, we can see, that player 2 has dominant strategy to play L, no matter what is the player 1's action
- If no player has information about the state, there is a single NE in this game: (B,L)

Now, consider that Player 2 can distinguish between two states

Player 1 now believes that there are two types of Player 2 (Left, and Right table) with equal probabilities

probability = $\frac{1}{2}$				proba	ability =	1/2	
S1	L	Μ	R	S2	L	М	R
Т	1,4	1,0	1,6	Т	1,4	1,6	1,0
В	2,16	0,0	0,24	В	2,16	0,24	0,0

Each type of Player 2 has a dominant action:

- For first type of player 2 it is best to play R, no matter of what is P1's action
- For second type of player 2 it is best to play M, no matter what is P1's action

If Player 1 believes that first type Player 2 chooses R and the second type of Player 2 chooses M:

- $EP(T) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$
- $EP(B) = \frac{1}{2}*0 + \frac{1}{2}*0 = 0$
- And the NE in this game is: (T,(R,M))

probability = $\frac{1}{2}$ probability = $\frac{1}{2}$ M R **S1** L S2 Μ R 1,4 1,0 1,6 1,4 1,6 1,0 Τ Т 2,16 0,24 0,24 B В 2,16 0,0 0,0

- Comparison of outcomes
- No information about state:
- NE = (B,L)
- Equilibrium payoff:
 - Player 1: 2
 - Player 2: 16 (both types)
- Information about state:
- NE = (T,(R,M))
- Equilibrium payoff:
 - Player 1: 1
 - Player 2: 6 (both types)

Comparison of outcomes

When Player 2 knows her type (knows the state), she optimally tailors her actions to the state which induces Player 1 to choose T rather than B and both players are worse off.

Note that this result is not general and depends on choice of payoffs of both players.

Modified Prisoner's dilemma

- Player 1 knows that:
 - with probability 2/3 Prisoner 2 is rational
 -> playing left game
 - with probability 1/3 Prisoner 2 is super nice
 - -> playing right game

Example: if Prisoner 1 believes that rational Prisoner 2 chooses C and super nice Prisoner 2 chooses RS, then:

- Prisoner 1: C -> 2/3*1+1/3*3 = 5/3
- Prisoner 2: RS -> 2/3*0+1/3*2 = 2/3

• Similarly, we can find expected payoff of all action profiles:

Bayesian NE

• Similarly, we can find expected payoff of all action profiles:

2 1	С	RS	2 1	С	RS
С	1,1	3,0	С	1,1	3,3
RS	0,3	2,2	RS	0,0	2,2

2 1	C,C	C,RS	RS,C	RS,RS
С	<u>1,1</u> ,1	<u>5/3,1,3</u>	<u>7/3</u> ,0,1	<u>3,0,3</u>
RS	0, <u>3</u> ,0	2/3, <u>3,2</u>	4/3,2,0	2,2, <u>2</u>

Summary

- Bayesian games information is incomplete (several possible states, types)
- How to find NE in Bayesian games:
 - consider each type as an individual player
 - given the beliefs, compute expected payoffs
 - find NE in this game