Var. A

1. [2.5 points]

Demand for X is given by function: $X=20-P_{X}^{2}+5 P_{Y}+0.5 I$, where X is demand for good X, P_{X} is its price, P_{Y} is price of good Y and I is income.

- Is X normal good (price goes up, demand goes down) or Giffen (price goes up, demand goes up). Explain!
- Is X ordinary good (income goes up, demand goes up) or inferior (income goes up, demand goes down). Explain!

Solution:

- X is normal good because if price P_{X} goes up, demand X goes down (because of a negative sign in front of P_{X}.)
- X is ordinary good because if income I goes up, demand X goes up (because of a positive sign in front of I.)

2. [2.5 points]

Suppose that you will participate in the following lottery: With 50% probability you win 36CZK and with 50% probability you win 100 CZK . Further suppose that your utility function is $U(w)=\sqrt{w}$, where w is the wealth.

- What is your expected value $E V$ and expected utility $E U$?
- Depict $E V$ and $E U$ on the graph below.

Solution:

$$
\begin{aligned}
& E V=0.5 * 36+0.5 * 100=68 \\
& E U=0.5 * \sqrt{36}+0.5 * \sqrt{100}=0.5 * 6+0.5 * 10=8
\end{aligned}
$$

Microeconomics I - Test \#2, March 20, 2009

Var. B

1. [2 points]

Demand for x is given by function: $x=100-3\left(P_{x}\right)^{2}$

- Calculate the price elasticity if $P_{x}=4$

Solution:

$$
\begin{aligned}
& x=100-3\left(P_{x}\right)^{2}=x=100-3(4)^{2}=100-48=52 \\
& \varepsilon_{P}=\frac{\Delta x / x}{\Delta P_{x} / P_{x}}=\frac{\Delta x}{\Delta P_{x}} \frac{P_{x}}{x}=-6 P_{x} \frac{P_{x}}{x}=-\frac{6 * 4^{2}}{52}=-\frac{24}{13}
\end{aligned}
$$

2. [3 points]

Sally's utility function is $U(w)=3 w$, where w is her wealth. She has an option to participate in two lotteries:
Lottery 1: With probability 40% Sally wins 40CZK and with probability 60% she wins 60 CZK .
Lottery 2: With probability 20% Sally wins 20 CZK and with probability 80% she wins 80 CZK .

- Is Sally risk averse, risk neutral, or risk loving? Why?
- Compute expected values and expected utilities of both lotteries.
- Which lottery would Sally choose? Why?

Solution:

Sally is risk neutral because her utility function is linear function (straight line).

$$
\begin{aligned}
& E V_{1}=0.4 * 40+0.6 * 60=16+36=52 \\
& E V_{2}=0.2 * 20+0.8 * 80=4+64=68 \\
& E U_{1}=0.4 * 3 * 40+0.6 * 3 * 60=48+108=156 \\
& E U_{2}=0.2 * 3 * 20+0.8 * 3 * 80=12+192=204
\end{aligned}
$$

Sally would choose the second lottery because it has a higher expected utility.

Var. C

1. [2.5 points]

Demand for X is given by function: $X=20-P_{X}^{2}+5 P_{Y}+0.5 I$, where X is demand for good X, P_{X} is its price, P_{Y} is price of good Y and I is income. Further: $P_{X}=5, P_{Y}=10$, and $I=30$.

- Compute price elasticity.
- Compute income elasticity.

Solution:

$$
\begin{aligned}
& X=20-P_{X}^{2}+5 P_{Y}+0.5 I=20-25+50+15=60 \\
& \varepsilon_{P}=\frac{\Delta X / X}{\Delta P_{X} / P_{X}}=\frac{\Delta X}{\Delta P_{X}} \frac{P_{X}}{X}=-2 P_{X} \frac{P_{X}}{X}=-\frac{2 * 5^{2}}{60}=-\frac{50}{60}=-\frac{5}{6} \\
& \varepsilon_{I}=\frac{\Delta X / X}{\Delta I / I}=\frac{\Delta X}{\Delta I} \frac{I}{X}=0.5 \frac{I}{X}=0.5 \frac{30}{60}=\frac{1}{4}
\end{aligned}
$$

2. [2.5 points]

The graph below illustrates a price change of good X. In particular, point "OLD" denotes consumer's consumption before the price change and point "NEW" denotes new consumption after the decrease in price of X.

- Is X normal good (price goes up, demand goes down) or Giffen (price goes up, demand goes up). Explain!
- Is X ordinary good (income goes up, demand goes up) or inferior (income goes up, demand goes down). Explain!

Solution:

X is normal good because if price goes down, demand goes up (this is measured by total effect (TE), i.e. moving from point A to point C). X is inferior good because if income goes up, demand goes down (this is measured by income effect (IE), i.e. moving from point B to point C).

Microeconomics I - Test \#2, March 20, 2009

Var. D

1. [2 points]

Demand for x is given by function: $x=5-\left(P_{x}\right)^{3}$

- Calculate the price elasticity if $P_{x}=1$

Solution:

$$
\begin{aligned}
& x=5-\left(P_{x}\right)^{3}=5-1^{3}=4 \\
& \varepsilon_{P}=\frac{\Delta x / x}{\Delta P_{x} / P_{x}}=\frac{\Delta x}{\Delta P_{x}} \frac{P_{x}}{x}=-3 P_{x}^{2} \frac{P_{x}}{x}=-\frac{3 * P_{x}^{3}}{x}=-\frac{3}{4}
\end{aligned}
$$

2. [3 points] Suppose that John will participate in the following lottery: With 50% probability he wins 36 CZK and with 50% probability he wins 100 CZK . Further suppose that his utility function is $U(w)=\sqrt{w}$, where w is the wealth.

- What is John's expected value $E V$ and expected utility $E U$?
- Depict $E V$ and $E U$ on the graph below.
- If John can choose between this lottery and 64 CZK sure wealth, what would he choose?

Solution:

$$
\begin{aligned}
& E V=0.5 * 36+0.5 * 100=18+50=68 \\
& E U=0.5 \sqrt{36}+0.5 \sqrt{100}=0.5 * 6+0.5 * 10=3+5=8
\end{aligned}
$$

If John chooses a lottery, his expected utility is $E U=8$. If he chooses 64 for sure, his expected utility is $E U=\sqrt{64}=8$. He compares these two expected utilities. They are the same, so John is indifferent between the lottery and 64 for sure.

