Microeconomics I - Test \#1, March 6, 2009

Var. A

1. [2.5 points]

$P_{x}=4 \mathrm{CZK}, P_{y}=6 \mathrm{CZK}, I=48 \mathrm{CZK}$
(a) Write down the equation of budget line with the given data
(b) Depict this on the graph; label the axis and put number to intersections with axis
(c) Depict a new budget line after change in price of y to $P_{y}=12$

Solution:

(a) $P_{x} x+P_{y} y=I \Rightarrow 4 x+6 y=48$
(b,c)

2. [2.5 points]

$U(x, y)=x^{2} y$

- Calculate marginal rate of substitution of the consumer with this utility function at point $(\mathrm{x}, \mathrm{y})=(1,2)$. Interpret the result.

Solution:

$$
M R S=\frac{M U_{x}}{M U_{y}}=\frac{\partial U(x, y) / \partial x}{\partial U(x, y) / \partial y}=\frac{2 x y}{x^{2}}=\frac{2 \cdot 1 \cdot 2}{1^{2}}=4
$$

This means that the consumer is willing to give up 4 units of good y in exchange for 1 more unit of x.

Var. B

1. [2.5 points]

$U(x, y)=x y$
(a) Depict an indifference curve for utility level of 12 (find and depict at least two points and corresponding quantities of $[\mathrm{x}, \mathrm{y}]$)
(b) Calculate the marginal rate of substitution in one of these points

Solution:

$$
M R S=\frac{M U_{x}}{M U_{y}}=\frac{\partial U(x, y) / \partial x}{\partial U(x, y) / \partial y}=\frac{y}{x}=(\text { in point }(4,3))=\frac{3}{4}
$$

This means that the consumer is willing to give up $3 / 4$ units of good y in exchange for 1 more unit of x.

2. [2.5 point]

On the picture below we see Tom's budget line and his indifference curves. Tom's endowment point is point A.
(a) Would Tom like to switch to point B if he has this chance?
(b) Is point A point of Tom's optimum? (Describe either formally or intuitively).

Solution:

(a) Yes, because point B lies on a higher indifference curve than point A.
(b) No, point B is optimum, because there $M R S=\frac{p_{x}}{p_{y}}$, i.e, indifference curve is tangent to the budget line.

Var. C
\qquad

1. [2.5 points]

$U(x, y)=x y$
$P_{x}=5$
$P_{y}=3$
$I=60$

- Calculate optimum of consumer (amount of x and y)

Solution:

$$
\text { optimality: } M R S=\frac{M U_{x}}{M U_{y}}=\frac{P_{x}}{P_{y}} \Rightarrow \frac{y}{x}=\frac{5}{3} \Rightarrow 5 x-3 y=0
$$

$$
\text { budget: } 5 x+3 y=60
$$

Solving this system of equations we get that $x=6$ and $y=10$.

2. [2.5 points]

Assume that Helen consumes only two goods x and y. For her, these goods are perfect substitutes. Draw several indifference curves in a graph with x on horizontal and y on vertical axis. What can you say about Helen's marginal rate of substitution?

Solution: Helen's marginal rate of substitution is constant (because x and y are substitutes).

Var. D
\qquad

1. [2.5 points]

$U(x, y)=2 x+y$

- Calculate marginal rate of substitution of the consumer with this utility function. Interpret the result.

Solution:

$$
M R S=\frac{M U_{x}}{M U_{y}}=\frac{2}{1}=2
$$

MRS is constant, i.e. goods x and y are perfect substitutes, i.e. consumer is willing to exchange x and y at a constant rate: $2 y$ for $1 x$.
2. [2.5 points]
$P_{x}=4 \mathrm{CZK}, P_{y}=6 \mathrm{CZK}, I=48 \mathrm{CZK}$
(a) Write down the equation of budget line with the given data
(b) Depict this on the graph; label the axis and put number to intersections with axis
(c) Depict a new budget line after change in income to $I=24$

Solution:

(a) $P_{x} x+P_{y} y=I \Rightarrow 4 x+6 y=48$
(b, c)

