Problem 1: A firm is on a competitive market, i.e. takes price of the output as given. Production function is given by $f\left(x_{1}, x_{2}\right)=x_{1}^{1 / 4} x_{2}^{1 / 4}$, prices of inputs are $w_{1}=4, w_{2}=4$ and price of output is $\mathrm{p}=1$. Find the profit maximizing level of output using:
(a) Profit-maximization approach
(b) Cost-minimization approach

Problem 2: Take the set-up from the previous problem. Apart from that the firm has to buy certain equipment before it starts the production. This equipment cost 2000 . Compute: variable costs (VC), fixed costs (FC), average variable costs (AVC), average fixed costs (AFC), average costs (AC) and marginal costs (MC).

Problem 3: The production function is $Q=f(L, K)=100 K L, w=300$, and $r=1200$. What are the total cost of the firm if the output is $Q=1600$ ?

Problem 4: The production function is $Q=f(L, K)=K^{2} L$. Draw isoquants corresponding to $Q=5$ and $Q=10$ and isocost for $w=1, r=2$, and $C=6$.

Problem 5: Total cost function of an individual firm facing perfect competition is given by relation:

$$
T C(Q)=Q^{3}-20 Q^{2}+150 Q
$$

The market price is equal to $\$ 22$. Find the optimal level of production of this firm. What is its profit/loss? Draw your solution in a graph.

Problem 6: Total cost function of an individual firm facing perfect competition is given in short run by relation:

$$
T C(Q)=\frac{Q^{3}}{3}-2 Q^{2}+5 Q
$$

(a) Short run. Calculate the individual short run supply of this firm.
(b) Short run. Calculate the optimum of this firm if market price is $\mathrm{P}=10 \mathrm{CZK}$ ? ( $\mathrm{P}^{*}$; $\mathrm{Q}^{*}$; and corresponding profit/loss).
(c) Long run. Suppose now, that the same cost function applies to the long run and this is a representative firm of industry. Calculate the long run equilibrium market price $\left(P_{M}^{*}\right)$ and corresponding quantity produced by one firm $\left(\mathrm{Q}^{*}\right)$.
(d) Long run. What will be the total number of firms in industry given that total quantity demanded is 30 ?

