Problem 1: Suppose that the utility function of the consumer is $U(x, y)=2 x y-x$, price of x is $P_{x}=3$ and income $I=64$.
(a) Derive the demand for good y (as a function of its price P_{y})

For the further part of the problem assume that the price of y is $P_{y}=4$
(b) Find the optimal consumption of good y
(c) Calculate price elasticity at this optimum
(d) If you were monopolist in this market would you rise/lower/maintain the price of y (with respect to price elasticity of demand)? Explain!

Problem 2: Calculating Slutsky's substitution and income effect. Suppose that the consumer has a demand function for beer of the form

$$
x_{1}=10+\frac{I}{10 p_{1}}
$$

His income I is $\$ 120$ per week and the price of beer is $p_{1}=\$ 3$. Determine the substitution and income effect if the price of beer falls to $\$ 2$.

Problem 3: Suppose that the price elasticity, ϵ, for cigarettes is -4 , the price of cigarettes is $\$ 3$ per pack and we want to reduce smoking by 20%. What should we do?

Problem 4: Consumer consumes two goods with their prices $P_{X}=10, P_{Y}=80$ and has income $I=5000 C Z K$. The demand function is given by $X=80-0.8 P_{X}^{2}-0.5 P_{Y}+0.04 I$.
(a) Are X and Y substitutes or complements?
(b) Is X normal or inferior good?
(c) What is price elasticity of demand for good X ? What information does this give to the producer of good X ?
(d) What is cross elasticity of demand for good X if price of Y changes?
(e) What is income elasticity of demand for good X ?

Problem 5: Consider the following utility function: $U\left(x_{1}, x_{2}\right)=3 x_{1}+2 x_{2}$, where x_{1}, x_{2} are the consumption of good 1 (food) and good 2 (clothing) respectively. Let p_{1}, p_{2} and I denote the corresponding prices and income. Suppose that $p_{1}=2, p_{2}=1$. Derive the optimal choice of food and clothing. Draw the Engel curves for food and clothing. Is food a normal good? What about clothing?

