Derivatives, Extremes and Optimization

The derivative is a measurement of how a function changes when its input changes. Loosely speaking, a derivative can be thought of as how much a quantity is changing at some given point. The derivative of a function at a chosen input value describes the best linear approximation of the function near that input value. For a real-valued function of a single real variable, the derivative at a point equals the slope of the tangent line to the graph of the function at that point.

Differentiation is a method to compute the rate at which a dependent output y, changes with respect to the change in the independent input x. This rate of change is called the derivative of y with respect to x. In more precise language, the dependency of y on x means that y is a function of x . If x and y are real numbers, and if the graph of y is plotted against x , the derivative measures the slope of this graph at each point. This functional relationship is often denoted $y=f(x)$, where f denotes the function.

In economics we start in some equilibrium point and want to analyze what happens in case of some exogenous changes. For example in a market model the initial equilibrium is represented by equilibrium price P^{*} and quantity Q^{*}. If some exogenous change occur the initial equilibrium will change. Derivatives measure the direction and speed of this change.

Example: $y=f(x)=x^{2}$. We refer to y and x as dependent and independent variable respectively. Suppose that x changes by Δx. The question is, how much will y change. Even more importantly, we are interested in rate of change: $\frac{\Delta y}{\Delta x}$. As Δy approaches zero we talk about the derivative of $f-f^{\prime}(x)$. In case of function $y=f(x)=x^{2}$, the derivative is $f^{\prime}(x)=2 x$.

Examples:

$$
\begin{array}{ll}
(\text { const })^{\prime}=0 & (10)^{\prime}=0 \\
(a x)^{\prime}=a & (2 x)^{\prime}=2 \\
\left(x^{n}\right)^{\prime}=n x^{n-1} & \left(x^{3}\right)^{\prime}=3 x^{2} \\
(\ln x)^{\prime}=\frac{1}{x} & (2 \ln x)^{\prime}=\frac{2}{x}
\end{array}
$$

Problem 1: Total cost function has the following form: $C=Q^{3}-4 Q^{2}+10 Q+75$. Find the marginal-cost function.

Solution: $M C=C^{\prime}=\frac{d C}{d Q}=3 Q^{2}-8 Q+10$.

Extremes:

Extreme denotes point of maximum or minimum. Finding extremes is used in all optimization problems (profit/utility maximization, cost minimization). Point E on the picture below is relative (local) maximum, point F is absolute (global) minimum.

Note:

- If $f^{\prime}(x)>0$ then a function $f(x)$ increases
- If $f^{\prime}(x)<0$ then a function $f(x)$ decreases

If a relative extreme occurs at some point A then the derivative of a function at point A is equal to zero.

The opposite implication (if derivative is zero in point A then a relative extreme occurs in that point) does not hold. For example $y=f(x)=x^{3}$. First derivative has to change the sign around point A.

Problem 2: Find the relative extrema of the function: $y=f(x)=x^{3}-12 x^{2}+36 x+8$.
Solution: First, we find the derivative:

$$
f^{\prime}(x)=3 x^{2}-24 x+36=0
$$

Applying quadratic formula we get that the last equation holds for $x=6$ and $x=2$. Since $\mathrm{f}^{\prime}(6)=\mathrm{f}^{\prime}(2)=0$, these two values of x are the critical values we desire. Now, we need to decide what type of extreme (minimum/maximum) we found. In the immediate neighborhood of $x=6$, we have $f^{\prime}(x)<0$ for $x<6$ and $f^{\prime}(x)>0$ for $x>6$; thus the value of the function $\mathrm{f}(6)=8$ is a relative minimum. Similarly, in the immediate neighborhood of $x=2$, we have $f^{\prime}(x)>0$ for $x<2$ and $f^{\prime}(x)<0$ for $x>2$; thus the value of the function $f(2)=40$ is a relative maximum.

To decide if a relative extreme point is minimum or maximum we also can use the second derivative of the function at a given point. If it is positive (negative) then we have the case of minimum (maximum).

Problem 3: Find relative extreme of the function $y=f(x)=4 x^{2}-x$
Solution: We find first derivative of the function: $y^{\prime}=f^{\prime}(x)=\left(4 x^{2}-x\right)^{\prime}=8 x-1$. We put this derivative equal to zero and get a point of extreme: $f^{\prime}(x)=8 x-1=0 \Rightarrow x=\frac{1}{8}$. We use second derivative to decide if this point of extreme is point of minimum or maximum: $f^{\prime \prime}(x)=(8 x-1)^{\prime}=8>0$. Second derivative is positive and hence $x=\frac{1}{8}$ is point of minimum.

Problem 4: Find relative extreme of the function $y=f(x)=x^{3}-3 x^{2}+2$
Solution: We find first derivative of the function: $y^{\prime}=f^{\prime}(x)=\left(x^{3}-3 x^{2}+2\right)^{\prime}=3 x^{2}-6 x$. We put this derivative equal to zero and get a point of extreme: $f^{\prime}(x)=3 x^{2}-6 x=0 \Rightarrow$ $x=0$ or $x=2$. We use second derivative to decide if these points of extreme are points of minimum or maximum: $f^{\prime \prime}(x)=\left(3 x^{2}-6 x\right)^{\prime}=6 x-6$. For $x=0$ the value of second derivative is negative $f^{\prime \prime}(x)=6 x-6=60-6=-6<0$ and thus $x=0$ is a point of relative maximum. Similarly, for $x=2$ the value of second derivative is positive $f^{\prime \prime}(x)=6 x-6=62-6=6>0$ and thus $x=2$ is a point of relative minimum.

Summary:

1. Find first derivative of the function
2. Put the derivative equal to 0 and find potential point(s) of extreme
3. Find second derivative of the function to decide if point(s) from 2 . is minimum/maximum/neither of them
4. If constrained optimization: check for corner solutions, i.e. check if the end points from the constraint do not give higher (lower) value that value in maximum (minimum)
