Problem 1: Two-sided market with non transferable utility. Find the set of stable matchings for the following table of preferences:

Problem 2: Housing markets and housing allocation problem - Random serial dictatorship. There are three agents i_{1}, i_{2}, i_{3} and three houses h_{1}, h_{2}, h_{3}. Agent i_{1} is a current tenant and he occupies house h_{1}. Agents i_{2}, i_{3} are new applicants and houses h_{2}, h_{3} are vacant houses.

- Utilities are:

	h_{1}	h_{2}	h_{3}
i_{1}	3	4	1
i_{2}	4	3	1
i_{3}	3	4	1

- Agent i_{1} has two options:

1. he can keep house h_{1}
2. he can give it up and enter the lottery

Which option should he chose?

Problem 3: Two-sided market with non transferable utility. In this problem we describe the mechanisms that we study in the context of constrained school choice: the Gale-Shapley Student-Optimal Stable mechanism, the Boston mechanism, and the Top Trading Cycles mechanism. We define a school choice problem by a set of schools and a set of students, each of which has to be assigned a seat at not more than one of the schools. Each student is assumed to have strict preferences over the schools and the option of remaining unassigned. Each school is endowed with a strict priority ordering over the students and a fixed capacity of seats.

Let $I=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ be the set of students, $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ be the set of schools, and $q=(1,2,1)$ be the capacity vector. The students' preferences P and the priority structure f are given in the table below. So, for instance, $P_{i_{1}}=s_{2}, s_{1}$ and $f_{s_{1}}\left(i_{1}\right)<f_{s_{1}}\left(i_{2}\right)<f_{s_{1}}\left(i_{3}\right)<$ $f_{s_{1}}\left(i_{4}\right)$.

$P_{i_{1}}$	$P_{i_{2}}$	$P_{i_{3}}$	$P_{i_{4}}$	$f_{s_{1}}$	$f_{s_{2}}$	$f_{s_{3}}$
s_{2}	s_{1}	s_{1}	s_{2}	i_{1}	i_{3}	i_{4}
s_{1}	s_{2}	s_{2}	s_{3}	i_{2}	i_{4}	i_{1}
	s_{3}		s_{1}	i_{3}	i_{1}	i_{2}
				i_{4}	i_{2}	i_{3}

If the students truthfully report their preferences, find outcomes of Gale and Shapley algorithm, Boston matching algorithm, and Top trading cycles algorithm.

Problem 4: Let $I_{E}=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}, I_{N}=\left\{i_{5}\right\}, H_{O}=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$, and $H_{V}=\left\{h_{5}, h_{6}, h_{7}\right\}$. Let the ordering f order the agents as $i_{1}-i_{2}-i_{3}-i_{4}-i_{5}$ and the preferences (from best to worst) as follows:

$P_{i_{1}}$	$P_{i_{2}}$	$P_{i_{3}}$	$P_{i_{4}}$	$P_{i_{5}}$
h_{2}	h_{7}	h_{2}	h_{2}	h_{4}
h_{6}	h_{1}	h_{1}	h_{4}	h_{3}
h_{5}	h_{6}	h_{4}	h_{3}	h_{7}
h_{1}	h_{5}	h_{7}	h_{6}	h_{1}
h_{4}	h_{4}	h_{3}	h_{1}	h_{2}
h_{3}	h_{3}	h_{6}	h_{7}	h_{5}
h_{7}	h_{2}	h_{5}	h_{5}	h_{6}
h_{0}	h_{0}	h_{0}	h_{0}	h_{0}

Use top trading cycles mechanism to find the outcome of this matching problem.

