AAU - Business Mathematics I
Lecture \#5, March 9, 2009

5 Linear Inequalities; Quadratic Equations, Inequalities; Equations and Inequalities with Absolute Value

5.1 Linear Inequalities

$3(x-5) \geq 5(x+7),-4 \leq 3-2 x<7, \ldots$

Properties of inequality:

1. if $a<b$ then $a+c<b+c$
2. if $a<b$ then $a-c<b-c$
3. if $a<b$ then $c a<c b$ for $c>0$

$$
c a>c b \text { for } c<0 \quad \text { multiplication }
$$

4. if $a<b$ then $a / c<b / c$ for $c>0$

$$
a / c>b / c \text { for } c<0 \quad \text { division }
$$

5. if $a<b$ and $b<c$ then $a<c$
addition
subtraction
transitivity

Problem: Solve $2(2 x+3)-10<6(x-2)$
Solution: Solving linear inequalities is almost the same as solving linear equalities. Only if you multiply or divide by a negative number, change the sign!!!

$$
\begin{aligned}
2(2 x+3)-10 & <6(x-2) \\
4 x+6-10 & <6 x-12 \\
-2 x & <-8 \quad /(-2) \quad \text { Change the sign of the inequality! } \\
x & >4 \quad
\end{aligned}
$$

The inequality holds for all $x \in(4, \infty)$.
Problem: Solve $-6<2 x+3 \leq 5 x-3$
Solution: We divide this problem into two parts and solve simultaneously these two inequalities:
$-6<2 x+3$ and $2 x+3 \leq 5 x-3$

$$
\begin{array}{rl}
-6<2 x+3 & 2 x+3 \leq 5 x-3 \\
-9<2 x & -3 x \leq-6 \\
-9 / 2<x & x \geq 2
\end{array}
$$

The inequality holds for all $x \in(-9 / 2, \infty)$ and at the same time $x \in[2, \infty)$. So the solution is $x \in[2, \infty)$.

Problem: Apple Inc. produces 100% apple juice. Its production function is $J \leq 12 A-4$, where J is quantity of juice in liters and A is quantity of apples in kilograms. For what quantity does Apple Inc. produce at most 20 liters of juice?

Solution:

$$
\begin{aligned}
J & \leq 20 \\
12 A-4 & \leq 20 \\
12 A & \leq 24 \\
A & \leq 2
\end{aligned}
$$

In order to produce at most 20 liters of juice, Apple Inc. can use at most 2 kilograms of apples.

LINEAR INEQUALITIES IN TWO VARIABLES:

Graphing linear inequalities on the number line: For instance, graph $x>2$. First, draw the number line, find the "equals" part (in this case, $x=2$), mark this point with the appropriate notation (an open dot, indicating that the point $x=2$ wasn't included in the solution), and then you'd shade everything to the right, because "greater than" meant "everything off to the right". The steps for graphing two-variable linear inequalities are very much the same.

Problem: Graph the solution to $y \leq 2 x+3$.
Solution: Just as for number-line inequalities, first find the "equals" part. For two-variable linear inequalities, the "equals" part is the graph of the straight line; in this case, that means the "equals" part is the line $y=2 x+3$:

We have the graph of the " or equal to" part (it's just the line); now we need "y less than" part. In other words, we need to shade one side of the line or the other. If we need y LESS THAN the line, we want to shade below the line:

Problem: Graph the solution to $2 x-3 y<6$.
Solution: First, solve for y :

$$
\begin{aligned}
& 2 x-3 y<6 \\
& -3 y<-2 x+6 \\
& y>\frac{2}{3} x-2
\end{aligned}
$$

Now we need to find the "equals" part, which is the line $y=\frac{2}{3} x-2$. Note, that here we have strict inequality therefore the line itself does not belong to the set of solutions and hence is graphed as a dashed line. It looks like this:

By using a dashed line, we know where the border is, but we also know that the border isn't included in the solution. Since this is a "y greater than" inequality, we need to shade above the line, so the solution looks like this:

Problem: A milk company faces the following problem. It's production function is $M+2 C \leq 12$ where M is the amount of milk produced and C is the amount of cheese. Price of the cheese is 5 and the price of milk is 10 . Company wants to reach a level of revenue of at least 20 . Draw the set of all possible combinations of milk and cheese.

Solution: This problem is about solving two inequalities, graphing them and finding their intercept.

$$
\begin{aligned}
& M+2 C \leq 12 \Rightarrow C \leq 6-\frac{M}{2} \text { Production function } \\
& P_{M} M+P_{C} C \geq 20 \Rightarrow 10 M+5 C \geq 20 \Rightarrow C \geq 4-2 M \text { Revenue requirement }
\end{aligned}
$$

The set of all possible combinations of Milk and Cheese is depicted in red on the graph below.

5.2 Quadratic Equations, Inequalities

QUADRATIC EQUATIONS: $a x^{2}+b x+c=0$
Equations with the second power of a variable; e.g.
$x^{2}-6 x+9=0$
$y^{2}+3 y-1=2 y^{2}-4 y-3$

1. SOLVING BY SQUARE ROOT:

$$
\begin{aligned}
& 3 x^{2}-27=0 \\
& 3 x^{2}=27 \\
& x^{2}=9 \\
& x= \pm \sqrt{9} \\
& x_{1,2}= \pm 3
\end{aligned}
$$

Note: if $a^{2}=b$, then $a \neq \sqrt{b}!!!$, but $a= \pm \sqrt{b}$
2. SOLVING BY FACTORING:

$$
\begin{aligned}
& x^{2}-x-6=0 \\
& (x+2)(x-3)=0 \\
& x_{1}=-2 \quad x_{2}=3
\end{aligned}
$$

3. SOLVING BY QUADRATIC FORMULA:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a} \quad \text { where } D=b^{2}-4 a c \\
& x^{2}-x-6=0 \\
& D=b^{2}-4 a c=1-4 \times 1 \times(-6)=25 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{1 \pm 5}{2}=-2,3
\end{aligned}
$$

Problem: Solve the following equation: $x^{2}+x-2=0$.
Solution:

$$
\begin{aligned}
& x^{2}+x-2=0 \\
& D=b^{2}-4 a c=1-4 \times 1 \times(-2)=9 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-1 \pm 3}{2}=1,-2
\end{aligned}
$$

Problem: Solve the following equation: $-x^{2}-x+2=0$.
Solution:

$$
\begin{aligned}
& -x^{2}-x+2=0 \\
& D=b^{2}-4 a c=(-1)^{2}-4 \times(-1) \times 2=9 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{1 \pm 3}{-2}=1,-2
\end{aligned}
$$

Problem: Solve the following equation: $x^{2}-8 x+16=0$.
Solution:

$$
\begin{aligned}
& x^{2}-8 x+16=0 \\
& D=b^{2}-4 a c=(-8)^{2}-4 \times 1 \times 16=0 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{8 \pm 0}{2}=4
\end{aligned}
$$

Problem: Solve the following equation: $x^{2}-4 x+10=0$.
Solution:

$$
\begin{aligned}
& x^{2}-4 x+10=0 \\
& D=b^{2}-4 a c=(-4)^{2}-4 \times 1 \times 16=16-64=-48 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{8 \pm \sqrt{-48}}{2} \text { the equation does not have any solutions }
\end{aligned}
$$

Problem: Solve the following equation: $-2 x^{2}+8 x-20=0$.
Solution:

$$
\begin{aligned}
& -2 x^{2}+8 x-20=0 \\
& D=b^{2}-4 a c=8^{2}-4 \times(-2) \times(-20)=64-160=-96 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-8 \pm \sqrt{-96}}{-4} \text { the equation does not have any solutions }
\end{aligned}
$$

Summary:

QUADRATIC INEQUALITIES: $a x^{2}+b x+c>0$
We always start solving quadratic inequality with solving a corresponding quadratic equality. This allows for sketching a graph of out quadratic function (parabola). From the graph we can determine the solution easily.

Problem: Solve $x^{2}+5 x+6>0$

Solution:

$$
\begin{aligned}
& x^{2}+5 x+6=0 \\
& (x+2)(x+3)=0 \\
& x=-2,-3
\end{aligned}
$$

Therefore, $x^{2}+5 x+6>0$ holds for all $x \in(-\infty,-2) \cup(-3, \infty)$.
Problem: Solve $x^{2}-5 x+4<0$

Solution:

$$
\begin{aligned}
& x^{2}-5 x+4=0 \\
& (x-1)(x-4)=0 \\
& x=1,4
\end{aligned}
$$

Therefore, $x^{2}-5 x+4<0$ holds for all $x \in(1,4)$.

