

# 5 Linear Inequalities; Quadratic Equations, Inequalities; Equations and Inequalities with Absolute Value

## 5.1 Linear Inequalities

$$3(x-5) > 5(x+7), -4 < 3 - 2x < 7, \dots$$

Properties of inequality:

1. if 
$$a < b$$
 then  $a + c < b + c$  addition

2. if 
$$a < b$$
 then  $a - c < b - c$  subtraction

3. if 
$$a < b$$
 then  $ca < cb$  for  $c > 0$ 

$$ca > cb$$
 for  $c < 0$  multiplication

4. if 
$$a < b$$
 then  $a/c < b/c$  for  $c > 0$ 

$$a/c > b/c$$
 for  $c < 0$  division

5. if 
$$a < b$$
 and  $b < c$  then  $a < c$  transitivity

**Problem:** Solve 2(2x+3) - 10 < 6(x-2)

**Solution:** Solving linear inequalities is almost the same as solving linear equalities. Only if you multiply or divide by a negative number, change the sign!!!

$$2(2x+3)-10 < 6(x-2)$$
  
 $4x+6-10 < 6x-12$   
 $-2x < -8$  /(-2) Change the sign of the inequality!  
 $x > 4$ 

The inequality holds for all  $x \in (4, \infty)$ .

**Problem:** Solve -6 < 2x + 3 < 5x - 3

Solution: We divide this problem into two parts and solve simultaneously these two inequalities:

$$-6 < 2x + 3$$
 and  $2x + 3 \le 5x - 3$ 

$$-6 < 2x + 3$$
  $2x + 3 \le 5x - 3$   
 $-9 < 2x$   $-3x \le -6$   
 $-9/2 < x$   $x \ge 2$ 

The inequality holds for all  $x \in (-9/2, \infty)$  and at the same time  $x \in [2, \infty)$ . So the solution is  $x \in [2, \infty)$ .

**Problem:** Apple Inc. produces 100% apple juice. Its production function is  $J \le 12A - 4$ , where J is quantity of juice in liters and A is quantity of apples in kilograms. For what quantity does Apple Inc. produce at most 20 liters of juice?

#### **Solution:**

$$J \leq 20$$

$$12A - 4 \leq 20$$

$$12A \leq 24$$

$$A \leq 2$$

In order to produce at most 20 liters of juice, Apple Inc. can use at most 2 kilograms of apples.

#### LINEAR INEQUALITIES IN TWO VARIABLES:

Graphing linear inequalities on the number line: For instance, graph x > 2. First, draw the number line, find the "equals" part (in this case, x = 2), mark this point with the appropriate notation (an open dot, indicating that the point x = 2 wasn't included in the solution), and then you'd shade everything to the right, because "greater than" meant "everything off to the right". The steps for graphing two-variable linear inequalities are very much the same.

*Problem:* Graph the solution to  $y \le 2x + 3$ .

Solution: Just as for number-line inequalities, first find the "equals" part. For two-variable linear inequalities, the "equals" part is the graph of the straight line; in this case, that means the "equals" part is the line y = 2x + 3:



We have the graph of the "or equal to" part (it's just the line); now we need "y less than" part. In other words, we need to shade one side of the line or the other. If we need y LESS THAN the line, we want to shade below the line:



*Problem:* Graph the solution to 2x - 3y < 6.

Solution: First, solve for y:

$$2x - 3y < 6$$
$$-3y < -2x + 6$$
$$y > \frac{2}{3}x - 2$$

Now we need to find the "equals" part, which is the line  $y = \frac{2}{3}x - 2$ . Note, that here we have strict inequality therefore the line itself does not belong to the set of solutions and hence is graphed as a dashed line. It looks like this:



By using a dashed line, we know where the border is, but we also know that the border isn't included in the solution. Since this is a "y greater than" inequality, we need to shade above the line, so the solution looks like this:



Problem: A milk company faces the following problem. It's production function is  $M + 2C \le 12$  where M is the amount of milk produced and C is the amount of cheese. Price of the cheese is 5 and the price of milk is 10. Company wants to reach a level of revenue of at least 20. Draw the set of all possible combinations of milk and cheese.

Solution: This problem is about solving two inequalities, graphing them and finding their intercept.

$$M+2C \leq 12 \implies C \leq 6-\frac{M}{2}$$
 Production function  $P_MM+P_CC \geq 20 \implies 10M+5C \geq 20 \implies C \geq 4-2M$  Revenue requirement

The set of all possible combinations of Milk and Cheese is depicted in red on the graph below.

28





## 5.2 Quadratic Equations, Inequalities

**QUADRATIC EQUATIONS:**  $ax^2 + bx + c = 0$ 

Equations with the second power of a variable; e.g.

$$x^2 - 6x + 9 = 0$$

$$y^2 + 3y - 1 = 2y^2 - 4y - 3$$

## 1. SOLVING BY SQUARE ROOT:

$$3x^2 - 27 = 0$$

$$3x^2 = 27$$

$$x^2 = 9$$

$$x = \pm \sqrt{9}$$

$$x_{1,2} = \pm 3$$

*Note:* if  $a^2 = b$ , then  $a \neq \sqrt{b}$ !!!, but  $a = \pm \sqrt{b}$ 

#### 2. SOLVING BY FACTORING:

$$x^2 - x - 6 = 0$$

$$(x+2)(x-3) = 0$$

$$x_1 = -2$$
  $x_2 = 3$ 

# 3. SOLVING BY QUADRATIC FORMULA:

$$ax^2 + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
 where  $D = b^2 - 4ac$ 

$$x^2 - x - 6 = 0$$

$$D = b^2 - 4ac = 1 - 4 \times 1 \times (-6) = 25$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{1 \pm 5}{2} = -2,3$$

*Problem:* Solve the following equation:  $x^2 + x - 2 = 0$ .

Solution:

$$x^{2} + x - 2 = 0$$

$$D = b^{2} - 4ac = 1 - 4 \times 1 \times (-2) = 9$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm 3}{2} = 1, -2$$



*Problem:* Solve the following equation:  $-x^2 - x + 2 = 0$ .

Solution:

$$-x^{2} - x + 2 = 0$$

$$D = b^{2} - 4ac = (-1)^{2} - 4 \times (-1) \times 2 = 9$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{1 \pm 3}{-2} = 1, -2$$



*Problem:* Solve the following equation:  $x^2 - 8x + 16 = 0$ .

Solution:

$$x^{2} - 8x + 16 = 0$$

$$D = b^{2} - 4ac = (-8)^{2} - 4 \times 1 \times 16 = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{8 \pm 0}{2} = 4$$



*Problem:* Solve the following equation:  $x^2 - 4x + 10 = 0$ .

Solution:

$$x^{2} - 4x + 10 = 0$$

$$D = b^{2} - 4ac = (-4)^{2} - 4 \times 1 \times 16 = 16 - 64 = -48$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{8 \pm \sqrt{-48}}{2}$$
 the equation does not have any solutions



*Problem:* Solve the following equation:  $-2x^2 + 8x - 20 = 0$ .

Solution:

$$-2x^{2} + 8x - 20 = 0$$

$$D = b^{2} - 4ac = 8^{2} - 4 \times (-2) \times (-20) = 64 - 160 = -96$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-8 \pm \sqrt{-96}}{-4}$$
 the equation does not have any solutions



### **Summary:**



# **QUADRATIC INEQUALITIES:** $ax^2 + bx + c > 0$

We always start solving quadratic inequality with solving a corresponding quadratic equality. This allows for sketching a graph of out quadratic function (parabola). From the graph we can determine the solution easily.

**Problem:** Solve  $x^2 + 5x + 6 > 0$ 

**Solution:** 

$$x^{2} + 5x + 6 = 0$$
$$(x+2)(x+3) = 0$$
$$x = -2, -3$$

Therefore,  $x^2 + 5x + 6 > 0$  holds for all  $x \in (-\infty, -2) \cup (-3, \infty)$ .

**Problem:** Solve  $x^2 - 5x + 4 < 0$ 

Solution:

$$x^{2} - 5x + 4 = 0$$
$$(x - 1)(x - 4) = 0$$
$$x = 1, 4$$

Therefore,  $x^2 - 5x + 4 < 0$  holds for all  $x \in (1, 4)$ .