AAU - Business Mathematics I
Lecture \#12, November 26, 2009

13 Financial Mathematics, Simple and Compound Interest

The central theme of these notes is embodied in the question, What is the value today of a sum of money which will be paid at a certain time in the future? Since the value of a sum of money depends on the point in time at which the funds are available, a method of comparing the value of sums of money which become available at different points of time is needed. This methodology is provided by the theory of interest.
A typical part of most insurance contracts is that the insured pays the insurer a fixed premium on a periodic (usually annual or semiannual) basis. Money has time value, that is, $\$ 1$ in hand today is more valuable than $\$ 1$ to be received one year hence. A careful analysis of insurance problems must take this effect into account. The purpose of this section is to examine the basic aspects of the theory of interest. A thorough understanding of the concepts discussed here is essential.
In this last context the interest rate i is called the nominal annual rate of interest. The effective annual rate of interest is the amount of money that one unit invested at the beginning of the year will earn during the year, when the amount earned is paid at the end of the year.

13.1 Simple and Compound Interest

Interest

Interest is a fee paid on borrowed capital. The fee is compensation to the lender for foregoing other useful investments that could have been made with the loaned money. Instead of the lender using the assets directly, they are advanced to the borrower. The borrower then enjoys the benefit of the use of the assets ahead of the effort required to obtain them, while the lender enjoys the benefit of the fee paid by the borrower for the privilege. The amount lent, or the value of the assets lent, is called the principal. This principal value is held by the borrower on credit. Interest is therefore the price of credit, not the price of money as it is commonly - and mistakenly - believed to be. The percentage of the principal that is paid as a fee (the interest), over a certain period of time, is called the interest rate. (wikipedia.org)

Simple interest

Simple Interest is calculated only on the principal, or on that portion of the principal which remains unpaid. The amount of simple interest is calculated according to the following formula:

$$
A=P(1+i n)
$$

where
A is the amount of money to be paid back
P is the principal
i is the interest rate (expressed as decimal number)
n the number of time periods elapsed since the loan was taken
Simple interest is often used over short time intervals, since the computations are easier than with compound interest.

For example, imagine Jim borrows $\$ 23,000$ to buy a car and that the simple interest is charged at a rate of 5.5% per annum. After five years, and assuming none of the loan has been paid off, Jim owes:

$$
A=23000(1+0.055 \times 5)=29325
$$

At this point, Jim owes a total of $\$ 29,325$ (principal plus interest).

Compound interest

In the short run, compound Interest is very similar to Simple Interest, however, as time goes on difference becomes considerably larger. The conceptual difference is that the principal changes with every time period, as any interest incurred over the period is added to the principal. Put another way, the lender is charging interest on the interest.

$$
A=P(1+i)^{n}
$$

In this case Jim would owe principal of $\$ 30,060$.

13.2 Savings, Loans, Project Evaluations

Time value of money

The time value of money represents the fact that, loosely speaking, it is better to have money today than tomorrow. Investor prefers to receive a payment today rather than an equal amount in the future, all else being equal. This is because the money received today can be deposited in a bank account and an interest is received.

Present value of a future sum

$$
P V=\frac{F V}{(1+i)^{n}}
$$

where:
$P V$ is the value at time 0
$F V$ is the value at time n
i is the rate at which the amount will be compounded each period n is the number of periods

Present value of an annuity

The term annuity is used in finance theory to refer to any terminating stream of fixed payments over a specified period of time. Payments are made at the end of each period.

$$
P V(A)=A \frac{1}{(1+i)}+A \frac{1}{(1+i)^{2}}+\ldots+A \frac{1}{(1+i)^{n}}=A \frac{1}{(1+i)} \frac{1-\frac{1}{(1+i)^{n}}}{1-\frac{1}{1+i}}=A \frac{1-\frac{1}{(1+i)^{n}}}{i}
$$

where:
$P V(A)$ is the value of the annuity at time 0
A is the value of the individual payments in each compounding period
i is the interest rate that would be compounded for each period of time
n is the number of payment periods

Present value of a perpetuity

A perpetuity is an annuity in which the periodic payments begin on a fixed date and continue indefinitely. It is sometimes referred to as a "perpetual annuity" (UK government bonds).
The value of the perpetuity is finite because receipts that are anticipated far in the future have extremely low present value (present value of the future cash flows). Unlike a typical bond, because the principal is never repaid, there is no present value for the principal. The price of a perpetuity is simply the coupon amount over the appropriate discount rate or yield, that is

$$
P V(P)=\frac{A}{(1+i)}+\frac{A}{(1+i)^{2}}+\frac{A}{(1+i)^{3}}+\ldots=\frac{\frac{A}{1+i}}{1-\frac{1}{1+i}}=\frac{A}{i}
$$

Future value of a present sum

$$
F V=P V(1+i)^{n}
$$

Future value of an annuity

$$
F V(A)=A(1+i)^{(n-1)}+A(1+i)^{(n-2)}+\ldots+A=A \frac{1-(1+i)^{n}}{1-(1+i)}=A \frac{(1+i)^{n}-1}{i}
$$

Example: One hundred euros to be paid 1 year from now, where the expected rate of return is 5% per year, is worth in today's money:

$$
P V=\frac{F V}{(1+i)^{n}}=\frac{100}{1.05}=95.23
$$

So the present value of 100 euro one year from now at 5% is 95.23 .

Example: Consider a 10 year mortgage where the principal amount P is $\$ 200,000$ and the annual interest rate is 6%. What will be a monthly payment?

The number of monthly payments is

$$
n=10 \text { years } \times 12 \text { months }=120 \text { months }
$$

The monthly interest rate is

$$
\begin{aligned}
& i=\frac{6 \% \text { per year }}{12 \text { monhs per year }}=0.5 \% \text { per month } \\
& P V(A)=A \frac{1-\frac{1}{(1+i)^{n}}}{i} \Rightarrow A=P V(A) \frac{i}{1-\frac{1}{(1+i)^{n}}}=P V(A) \frac{i(1+i)^{n}}{(1+i)^{n}-1} \\
& A=200000 \frac{0.005(1+0.005)^{120}}{(1+0.005)^{120}-1}=\$ 2220.41 \text { per month. }
\end{aligned}
$$

Example: Consider a deposit of $\$ 100$ placed at 10% annually. How many years are needed for the value of the deposit to double?

$$
\begin{aligned}
& F V=P V(1+i)^{n} \\
& 200=100(1+0.1)^{n} \\
& 1.1^{n}=\frac{200}{100}=2 \\
& \ln 1.1^{n}=\ln 2 \\
& n \ln 1.1=\ln 2 \\
& n=\frac{\ln 2}{\ln 1.1}=7.27 \text { years }
\end{aligned}
$$

Example: Similarly, the present value formula can be rearranged to determine what rate of return is needed to accumulate a given amount from an investment. For example, $\$ 100$ is invested today and $\$ 200$ return is expected in five years; what rate of return (interest rate) does this represent?

$$
\begin{aligned}
& F V=P V(1+i)^{n} \\
& 200=100(1+i)^{5} \\
& (1+i)^{5}=\frac{200}{100}=2 \\
& (1+i)=2^{1 / 5} \\
& i=2^{1 / 5}-1=0.15=15 \%
\end{aligned}
$$

Example: A manager of a company has to choose one of two possible projects. Project A requires immediate investment $\$ 500$ and yields returns $\$ 200, \$ 300$, and $\$ 400$ in the following three years. For project B it is necessary to invest $\$ 400$ now and the expected returns in the next three years are $\$ 400, \$ 100$ and $\$ 50$. Supposed that an interest rate is 10%. Which project should the manager choose?

Having time value of money in mind, manager should choose project with a higher present value.

$$
\begin{aligned}
& P V_{A}=-500+\frac{200}{1+i}+\frac{300}{(1+i)^{2}}+\frac{400}{(1+i)^{3}}=-500+\frac{200}{1.1}+\frac{300}{1.1^{2}}+\frac{400}{1.1^{3}}= \\
& =-500+182+248+300=230 \\
& P V_{B}=-400+\frac{400}{1+i}+\frac{100}{(1+i)^{2}}+\frac{50}{(1+i)^{3}}=-400+\frac{400}{1.1}+\frac{100}{1.1^{2}}+\frac{50}{1.1^{3}}= \\
& =-400+364+83+38=85
\end{aligned}
$$

Project A has a higher present value and hence should be chosen.

Problem: Instead of making payments of 300,400 , and 700 at the end of years 1,2 , and 3 , the borrower prefers to make a single payment of 1400 . At what time should this payment be made if the interest rate is 6% compounded annually?
Solution: Computing all of the present values at time 0 shows that the required time t satisfies the equation of value:

$$
\begin{aligned}
& \frac{300}{1.06}+\frac{400}{1.06^{2}}+\frac{700}{1.06^{3}}=\frac{1400}{1.06^{t}} \\
& 1.06^{t}=\frac{1400}{283+356+588}=\frac{1400}{1227}=1.141
\end{aligned}
$$

$$
\log 1.06^{t}=\log 1.141
$$

$$
t=\frac{\log 1.141}{\log 1.06} \approx \frac{0.0573}{0.0253} \approx 2.26
$$

13.3 Bond Pricing

In finance, a bond is a debt security, in which the issuer (borrower) owes the holders (lenders) a debt and is obliged to pay interest (the coupon) and to repay the principal at a later date maturity.
Par Value (as stated on the face of the bond, F) is the amount that the issuing firm is to pay to the bond holder at the maturity date.

Coupon Yield is simply the coupon payment (C) as a percentage of the face value (F).
Coupon yield $=C / F$

Current Yield is simply the coupon payment (C) as a percentage of the (current) bond price (P).
Current yield $=C / P$.
Yield to Maturity (YTM) is the discount rate r which returns the market price of the bond. YTM is thus the internal rate of return of an investment in the bond made at the observed price. Since YTM can be used to price a bond, bond prices are often quoted in terms of YTM.
Whatever r is, if you use it to calculate the present values of all payouts and then add up these present values, the sum will equal your initial investment.
In an equation,
$P=C(1+r)^{-1}+C(1+r)^{-2}+\ldots+C(1+r)^{-n}+F(1+r)^{-n}=\frac{C\left[1-(1+i)^{-n}\right]}{i}+F(1+i)^{-n}$
where
$C=$ annual coupon payment (in dollars, not a percent)
$n=$ number of years to maturity
$F=$ par value
$P=$ purchase price

Problem: Suppose your bond is selling for $\$ 950$, and has a coupon rate of 7%; it matures in 4 years, and the par value is $\$ 1000$. What is the YTM?

Solution: The coupon payment is $\$ 70$ (that's 7% of $\$ 1000$), so the equation to satisfy is

$$
70(1+r)^{-1}+70(1+r)^{-2}+70(1+r)^{-3}+70(1+r)^{-4}+1000(1+r)^{-4}=950
$$

We are not really going to solve this, but the result is that r equals 8.53% (If you want, you can plug this number back into equation to make sure it is correct).

Problem: A $\$ 5,000$ bond pays the holder an interest rate of 10% payable semi-annually. The bond will be redeemed at par in 10 years. An investor wants to purchase the bond on the bond market to yield a return of 12% payable semi-annually. What would be the purchase price of the bond?

Solution: Since the bond pays 10% on $\$ 5,000$ semiannually, the regular interest payment will be: $C=\frac{0.1}{2} \times 5000=250$
From the information given, the remaining number of interest periods is 20 . The redemption value of the bond in ten years is the par value or the face value of the bond, $\$ 5000$.
Now to compute the purchase price, we must calculate the present values of the payments and the redemption value. Since the yield rate is the rate the investor wants to receive, it is the rate we
must use to find the present values in determining the purchase price. Substituting the values into our formula, we have:
$P=\frac{C\left[1-(1+i)^{-n}\right]}{i}+F(1+i)^{-n}=\frac{250\left[1-(1+0.06)^{-20}\right]}{0.06}+5000(1+0.06)^{-20}=$
$=\$ 2,867.50+\$ 1,559.02=\$ 4,426.52$

Problem: What is the price of the following quarterly bond?
Face value: $\$ 1,000$
Maturity: 10 years
Coupon rate: 10%
Discount rate: 8\%

Solution:

$$
\frac{25}{0.08 / 4}\left[1-\frac{1}{(1+0.08 / 4)^{10 \cdot 4}}\right]+\frac{1000}{(1+0.08 / 4)^{10 \cdot 4}}=\$ 1136.78
$$

