AAC - Business Mathematics I
Lecture \#6, November 3, 2007
Katarína Kálovcová

6 Exponential equations and logarithmic equations

There are two basic methods of solving exponential equations:
First: if it is possible to transform the equation to one with the same base on both sides of the equation, we just compare the exponents.
Second: if it is possible to transform the equation to one with the same base on both sides of the equation, we use logarithm
Example: Solve $4^{x-3}=16$

$$
\begin{aligned}
& \left(2^{2}\right)^{x-3}=16 \\
& 2^{2(x-3)}=2^{4} \\
& 2 x-6=4 \\
& 2 x=10 \\
& x=5
\end{aligned}
$$

Example: Solve $27^{x+1}=9$

$$
\begin{aligned}
& \left(3^{3}\right)^{x+1}=3^{2} \\
& 3^{3(x+1)}=3^{2} \\
& 3 x+3=2 \\
& 3 x=-1 \\
& x=-1 / 3
\end{aligned}
$$

Example: Solve $7^{x^{2}}=7^{2 x+3}$

$$
\begin{aligned}
& 7^{x^{2}}=7^{2 x+3} \\
& x^{2}=2 x+3 \\
& x^{2}-2 x-3=0 \\
& D=b^{2}-4 a c=4-4 \times 1 \times(-3)=16 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{2 \pm 4}{2}=-1,3
\end{aligned}
$$

Example: Solve $4^{5 x-x^{2}}=4^{-6}$

$$
4^{5 x-x^{2}}=4^{-6}
$$

$$
\begin{aligned}
& -x^{2}+5 x+6=0 \\
& D=b^{2}-4 a c=25-4 \times(-1) \times 6=49 \\
& x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-5 \pm 7}{-2}=-1,6
\end{aligned}
$$

Example: Find $y: y=\log _{3} 27$

$$
\begin{aligned}
& y=\log _{3} 27 \Leftrightarrow 3^{y}=27 \\
& y=3
\end{aligned}
$$

Example: Find $y: y=\log _{9} 27$

$$
\begin{aligned}
& y=\log _{9} 27 \Leftrightarrow 9^{y}=27 \\
& \left(3^{2}\right)^{y}=3^{3} \\
& 3^{(2 y)}=3^{3} \\
& 2 y=3 \\
& y=3 / 2
\end{aligned}
$$

Example: Find $x: \log _{2} x=-3$

$$
\begin{aligned}
& \log _{2} x=-3 \Leftrightarrow x=2^{(-3)} \\
& x=\frac{1}{2^{3}} \\
& x=1 / 8
\end{aligned}
$$

Example: Find $b: \log _{b} 100=2$

$$
\begin{aligned}
& \log _{b} 100=2 \Leftrightarrow b^{2}=100 \\
& b=\sqrt{100} \\
& b=10
\end{aligned}
$$

Examples:

$$
\begin{array}{ll}
\log _{e} 1=0 & \log _{10} 10=1 \\
10^{\log _{10} 7}=7 & \log _{e} e^{2 x+1}=2 x+1 \\
e^{\log _{e} x^{2}}=x^{2} &
\end{array}
$$

- If you know that $\log _{e} 3=1.1$ and $\log _{e} 7=1.95$, find $\log _{e}\left(\frac{7}{3}\right)$ and $\log _{e} \sqrt[3]{21}$.

$$
\begin{aligned}
& \log _{e}\left(\frac{7}{3}\right)=\log _{e} 7-\log _{e} 3=1.95-1.1=0.85 \\
& \log _{e} \sqrt[3]{21}=\log _{e} 21^{1 / 3}=1 / 3 \log _{e} 21=1 / 3 \log _{e}(3 \times 7)=1 / 3\left[\log _{e} 3+\log _{e} 7\right]= \\
& =1 / 3[1.1+1.95]=1 / 3 \times 3.05 \approx 1.02
\end{aligned}
$$

- Find $x: \log _{b} x=\frac{2}{3} \log _{b} 27+2 \log _{b} 2-\log _{b} 3$

$$
\begin{aligned}
& \log _{b} x=\frac{2}{3} \log _{b} 27+2 \log _{b} 2-\log _{b} 3 \\
& \log _{b} x=\log _{b} 27^{2 / 3}+\log _{b} 2^{2}-\log _{b} 3 \\
& \log _{b} x=\log _{b}\left[27^{2 / 3} \times 2^{2} / 3\right] \\
& \log _{b} x=\log _{b}[9 \times 4 / 3] \\
& x=\frac{9 \times 4}{3}=12
\end{aligned}
$$

- $2 \log _{5} x=\log _{5}\left(x^{2}-6 x+2\right)$

$$
\begin{aligned}
& 2 \log _{5} x=\log _{5}\left(x^{2}-6 x+2\right) \\
& \log _{5} x^{2}=\log _{5}\left(x^{2}-6 x+2\right) \\
& x^{2}=x^{2}-6 x+2 \\
& 6 x=2 \\
& x=1 / 3
\end{aligned}
$$

- $\log _{e}(x+8)-\log _{e} x=3 \log _{e} 2$

$$
\begin{aligned}
& \log _{e}(x+8)-\log _{e} x=3 \log _{e} 2 \\
& \log _{e} \frac{x+8}{x}=\log _{e} 2^{3} \\
& x+8=8 x \\
& 7 x=8 \\
& x=8 / 7
\end{aligned}
$$

- $(\ln x)^{2}=\ln x^{2}$, where \ln is a short notation for $\log _{e}$

$$
\begin{aligned}
& (\ln x)^{2}=\ln x^{2} \\
& (\ln x)^{2}=2 \ln x \\
& (\ln x)^{2}-2 \ln x=0 \\
& \ln x(\ln x-2)=0 \\
& \ln x=0 \quad \text { OR } \quad \ln x-2=0 \\
& x=e^{0}=1 \quad \text { OR } \quad x=e^{2}
\end{aligned}
$$

- $2^{3 x-2}=5$ This equation can not be transformed to get the equation with the same base on each side, therefore we will use logarithm to solve it.

$$
\begin{aligned}
& 2^{3 x-2}=5 / \log _{10} \\
& \log _{10} 2^{3 x-2}=\log _{10} 5 \\
& (3 x-2) \log _{10} 2=\log _{10} 5 \\
& (3 x-2)=\frac{\log _{10} 5}{\log _{10} 2} \\
& x=\frac{1}{3}\left(2+\frac{\log _{10} 5}{\log _{10} 2}\right)
\end{aligned}
$$

- You have $\$ 10000$ and the annual interest rate is 10%. Imagine that you have to options. You can deposit the money for 4 years and interest rate being compounded annually or you can deposit the money for 2 years and interest rate being compounded semiannually. Decide which option is better (in terms of money).
First option: $A=P(1+r)^{t}=10000 \times(1+0.10)^{4}$
Second option: $A=P(1+r / n)^{n} t=10000 \times(1+0.10 / 2)^{4}=10000 \times(1+0.05)^{4}$
Hence, the second option gives more money that the first one.

