AAC - Business Mathematics I
Lecture \#5, November 3, 2007
Katarína Kálovcová

5 Exponents and logarithms

Note that there is a difference between x^{2} and 2^{x}. It makes a big difference whether a variable appears as a base with a constant exponent or as an exponent with a constant base.

Exponential function: $f(x)=b^{x}, b>0, b \neq 0$
$f(x)$ defines an exponential function for each different constant b, called the base. The independent variable x may assume any real value.

We require the base to be positive $(b>0)$ because if x is for example $1 / 2$, we have $f(x)=b^{x}=$ $b^{1 / 2}=\sqrt{b}$ and we only can have a non negative number under the square root.

Exponential function properties:

$$
\begin{aligned}
& a^{x} a^{y}=a^{x+y} \\
& \left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}} \quad\left(a^{x}\right)^{y}=a^{x y} \\
& a^{x}=a^{y} \text { if and only if } x=y \\
& \text { for } x \neq 0, a^{x}=b^{x} \text { if and only if } a=b \\
& 0^{x}=0,1^{x}=1, \quad x^{0}=1 \text { for all } x
\end{aligned}
$$

Example: Simplify:

$$
\begin{aligned}
& \text { (a) }\left(\frac{4}{3}\right)^{2} \frac{3^{3}}{4} \\
& \left(\frac{4}{3}\right)^{2} \frac{3^{3}}{4}=\frac{4^{2}}{3^{2}} \frac{3^{3}}{4}=4^{(2-1)} 3^{(3-2)}=4 \times 3=12 \\
& \text { (b) }\left(\frac{2 a}{3 b}\right)^{2} \frac{5}{2^{3}} \\
& \left(\frac{2 a}{3 b}\right)^{2} \frac{5}{2^{3}}=\frac{4 a^{2}}{9 b^{2}} \frac{5}{2^{3}}=\frac{5}{18} a^{2} b^{-2}
\end{aligned}
$$

Example: Suppose $\$ 4000$ is invested at 10% annual rate compounded annually. How much money will be in the account in 1 year, 2 years, and in 10years?
in one year: $4000+0.10 \times 4000=4000 \times(1+0.1)$
in two years: $4000 \times(1+0.1)+0.1 \times 4000 \times(1+0.1)=4000 \times(1+0.1)^{2}$
in ten years: $4000 \times(1+0.1)^{10} \approx 2.6 \times 4000=10400$

Generally: If P is the amount of money invested (principal) at an annual rate r (expressed in decimal form), then the amount A in the account at the end of t years is given by:

$$
A=P(1+r)^{t}
$$

Example: How much do you have to invest if you want to have $\$ 5000$ in 3 years at 5% compounded annually?

$$
\begin{aligned}
& A=P(1+r)^{t} \\
& 5000=P(1+0.05)^{3} \\
& P=\frac{5000}{1.05^{3}}=4320
\end{aligned}
$$

Example: Suppose you deposit $\$ 1000$ in a savings and loan that pays 8% compounded semiannually. How much will the savings and loan owe you at the end of 2 years? 10 years?

$$
\begin{aligned}
& \text { in half a year: } 1000+\frac{0.08}{2} \times 1000=1000 \times(1+0.04) \\
& \text { in a year: } 1000 \times(1+0.04)+\frac{0.08}{2} \times 1000(1+0.04)=1000 \times(1+0.04)^{2} \\
& \text { in two years: } 1000 \times(1+0.04)^{4} \\
& \text { in ten years: } 1000 \times(1+0.04)^{20}
\end{aligned}
$$

Generally: If a principal P is invested at an annual rate r (expressed in decimal form) compounded n times a year, then the amount A in the account at the end of t years is given by:

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Exponential function with base $e: f(x)=e^{x}$, where $e=2.7182$
Now, let's get back to the formula $A=P\left(1+\frac{r}{n}\right)^{n t}$. What happens if n increases to infinity? In other words, what it an annual rate r is compounded continuously?

$$
A=P\left(1+\frac{r}{n}\right)^{n t}=P\left(1+\frac{1}{n / r}\right)^{(n / r) r t}=P\left[\left(1+\frac{1}{m}\right)^{m}\right]^{r t}=P e^{r t}
$$

For a very large values of $m, m \rightarrow \infty,(1+1 / m)^{m} \approx e$
Continuous compound interest formula: If a principal P is invested at an annual rate r (expressed as a decimal) compounded continuously, then the amount A in the account at the end of t years is given by:

$$
A=P e^{r t}
$$

This formula is widely used in business, banking and economics.

Definition of logarithmic function: For $b>0$ and $b \neq 1$,

$\operatorname{logarithmic~form~}$		exponential form
$y=\log _{b} x$	is equivalent to	$x=b^{y}$

For example,

$$
\begin{array}{ccc}
y=\log _{10} x & \text { is equivalent to } \quad x=10^{y} \\
y=\log _{e} x & \text { is equivalent to } & x=e^{y}
\end{array}
$$

Example: Change each logarithmic form to an equivalent exponential form:

$$
\begin{array}{rll}
\log _{2} 8=3 & \text { is equivalent to } & 8=2^{3} \\
\log _{25} 5=1 / 2 & \text { is equivalent to } & 5=25^{1 / 2} \\
\log _{2} 1 / 4=-2 & \text { is equivalent to } & 1 / 4=2^{-2} \\
\log _{3} 27=3 & \text { is equivalent to } & 27=3^{3} \\
\log _{36} 6=1 / 2 & \text { is equivalent to } & 6=36^{1 / 2} \\
\log _{3} 1 / 9=-2 & \text { is equivalent to } & 1 / 9=3^{-2}
\end{array}
$$

Example: Change each exponential form to an equivalent logarithmic form:

$$
\begin{aligned}
& 49=7^{2} \text { is equivalent to } \log _{7} 49=2 \\
& 3=\sqrt{9} \text { is equivalent to } \log _{9} 3=1 / 2 \\
& 1 / 5=5^{-1} \text { is equivalent to } \log _{5} 1 / 5=-1 \\
& 16=4^{2} \text { is equivalent to } \\
& \log _{4} 16=2 \\
& 3=27^{1 / 3} \text { is equivalent to } \log _{27} 3=1 / 3 \\
& 4=16^{1 / 2} \text { is equivalent to } \log _{16} 4=1 / 2
\end{aligned}
$$

Properties of logarithmic functions: If b, M, and N are positive real numbers, $b \neq 1$, and p and x are real numbers, then:

$$
\begin{aligned}
\log _{b} 1=0 & \log _{b} M N=\log _{b} M+\log _{b} N \\
\log _{b} b=1 & \log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N \\
\log _{b} b^{x}=x & \log _{b} M^{p}=p \log _{b} M \\
b^{\log _{b} x}=x, x>0 & \log _{b} M=\log _{b} N \quad \text { iff } \quad M=N
\end{aligned}
$$

