AAC - Business Mathematics I
Lecture \#4, October 20, 2007
Katarína Kálovcová

4 Inequalities: linear, quadratic, rational

$3(x-5) \geq 5(x+7),-4 \leq 3-2 x<7, \ldots$

Properties of inequality:

1. if $a<b$ then $a+c<b+c$
2. if $a<b$ then $a-c<b-c$
3. if $a<b$ then $c a<c b$ for $c>0$

$$
c a>c b \text { for } c<0 \quad \text { multiplication }
$$

4. if $a<b$ then $a / c<b / c$ for $c>0$

$$
a / c>b / c \text { for } c<0
$$

5. if $a<b$ and $b<c$ then $a<c$
division
addition
subtraction
transitivity

Problem: Solve $2(2 x+3)-10<6(x-2)$
Solution: Solving linear inequalities is almost the same as solving linear equalities. Only if you multiply or divide by a negative number, change the sign!!!

$$
\begin{aligned}
2(2 x+3)-10 & <6(x-2) \\
4 x+6-10 & <6 x-12 \\
-2 x & <-8 \quad /(-2) \quad \text { Change the sign of the inequality! } \\
x & >4 \quad
\end{aligned}
$$

The inequality holds for all $x \in(4, \infty)$.
Problem: Solve $-6<2 x+3 \leq 5 x-3$
Solution: We divide this problem into two parts and solve simultaneously these two inequalities:
$-6<2 x+3$ and $2 x+3 \leq 5 x-3$

$$
\begin{array}{rl}
-6<2 x+3 & 2 x+3 \leq 5 x-3 \\
-9<2 x & -3 x \leq-6 \\
-9 / 2<x & x \geq 2
\end{array}
$$

The inequality holds for all $x \in(-9 / 2, \infty)$ and at the same time $x \in[2, \infty)$. So the solution is $x \in[2, \infty)$.

Problem: Apple Inc. produces 100% apple juice. Its production function is $J \leq 12 A-4$, where J is quantity of juice in liters and A is quantity of apples in kilograms. For what quantity does Apple Inc. produce at most 20 liters of juice?
Solution:

$$
\begin{aligned}
J & \leq 20 \\
12 A-4 & \leq 20 \\
12 A & \leq 24 \\
A & \leq 2
\end{aligned}
$$

In order to produce at most 20 liters of juice, Apple Inc. can use at most 2 kilograms of apples.

INEQUALITIES WITH ABSOLUTE VALUE:

Again, solving inequalities with absolute value is almost the same as solving equations with absolute value. Only multiplying or dividing by a negative number changes the sign of inequality.

Problem: Solve $|x-5|<1$
Solution: We are looking for all x such that the difference of x from 5 is less than 1 . It's clear that this is true for all $x \in(4,6)$.

$$
\begin{aligned}
& |x-5|<1 \\
& -1<x-5<1 \\
& 4<x<6
\end{aligned}
$$

Indeed, the inequality holds for all $x \in(4,6)$.
Problem: Solve $|3 x-2|<7$

Solution:

$$
\begin{aligned}
& |3 x-2|<7 \\
& -7<3 x-2<7 \\
& -5<3 x<9 \\
& -5 / 3<x<3
\end{aligned}
$$

The inequality holds for all $x \in(-5 / 3,3)$.

QUADRATIC INEQUALITIES - $a x^{2}+b x+c>0$

We always start solving quadratic inequality with solving a corresponding quadratic equality. This allows for sketching a graph of out quadratic function (parabola). From the graph we can determine the solution easily.

Problem: Solve $x^{2}+5 x+6>0$

Solution:

$$
\begin{aligned}
& x^{2}+5 x+6=0 \\
& (x+2)(x+3)=0 \\
& x=-2,-3
\end{aligned}
$$

Therefore, $x^{2}+5 x+6>0$ holds for all $x \in(-\infty,-2) \cup(-3, \infty)$.
Problem: Solve $x^{2}-5 x+4>0$

Solution:

$$
\begin{aligned}
& x^{2}-5 x+4=0 \\
& (x-1)(x-4)=0 \\
& x=1,4
\end{aligned}
$$

Therefore, $x^{2}-5 x+4>0$ holds for all $x \in(1,4)$.

RATIONAL INEQUALITIES

$$
\frac{x+1}{x-3}>1, \quad \frac{x+1}{x^{2}-3 x+5}<0, \quad \frac{x^{2}-x-1}{2 x^{2}+4 x-3}>5, \ldots
$$

Problem: Solve $\frac{2 x}{x+2}>1$
Solution: Note that we can not just multiply the inequality by $(x+2)$ and solve the resulting linear inequality $2 x>x+2$, because we do not know whether $x+2$ is positive or negative and hence we do not know whether we should change the sign of inequality or not. So we distinguish two cases:

- $x+2>0 \quad \Rightarrow \quad x>-2 \quad \ldots \quad 2 x>x+2 \quad \Rightarrow \quad x>2$
- $x+2<0 \quad \Rightarrow \quad x<-2 \quad \ldots \quad 2 x<x+2 \quad \Rightarrow \quad x<2$

Alternative solution:

$$
\begin{aligned}
& \frac{2 x}{x+2}>1 \\
& \frac{2 x}{x+2}-1>0 \\
& \frac{x-2}{x+2}>0
\end{aligned}
$$

Here, we need the ratio of two numbers be positive. This is the case if both numerator and denominator are positive or if both numerator and denominator are negative:

- $x-2>0$ and $x+2>0 \quad \Leftrightarrow \quad x>2$ and $x>-2 \quad \Rightarrow x>2$

OR

- $x-2<0$ and $x+2<0 \quad \Leftrightarrow \quad x<2$ and $x<-2 \quad \Rightarrow x<-2$

Hence the solution to the problem is $x \in(-\infty,-2) \cup(2, \infty)$.
Problem: Solve and $\frac{x^{2}-3 x-10}{1-x} \geq 2$

Solution:

$$
\begin{aligned}
& \frac{x^{2}-3 x-10}{1-x} \geq 2 \\
& \frac{x^{2}-3 x-10-2+2 x}{1-x} \geq 0 \\
& \frac{x^{2}-x-12}{1-x} \geq 0
\end{aligned}
$$

This fraction is greater or equal to 0 if both numerator and denominator are positive or if both are negative. In this problem, numerator can be equal to 0 as well. Denominator can never be equal to 0 !

$$
\frac{(x+3)(x-4)}{1-x} \geq 0
$$

- $(x+3)(x-4) \geq 0$ and $1-x>0 \quad \Leftrightarrow \quad x \in(-\infty,-3] \cup[4, \infty)$ and $x<1 \Rightarrow x \in(-\infty,-3]$

OR

- $(x+3)(x-4) \leq 0$ and $1-x<0 \quad \Leftrightarrow \quad x \in[-3,4]$ and $x>1 \quad \Rightarrow x \in(1,4]$

Therefore, the solution to this problem is $x \in(-\infty,-3] \cup(1,4]$.

