AAC - Business Mathematics I
Lecture \#2, October 6, 2007
Katarína Kálovcová

2 Algebraic Expressions and Polynomials

Algebraic expressions are formed using constants, variables and operators
e.g. $\sqrt{x^{3}+5}, x+y-7,(2 x-y)^{2}, \ldots$

Polynomials are special algebraic expressions which include only addition, subtraction, multiplication and raising to a natural number powers
e.g. $4 x^{3}-2 x+7$ (polynomial of $3^{\text {rd }}$ degree), $x^{3}-3 x^{2} y+x y^{2}+2 y^{7}$ ($7^{\text {th }}$ degree), $2 x^{3} y^{2}-5 x-2 y^{2}$ ($5^{\text {th }}$ degree), \ldots

BASIC OPERATIONS

Addition: $\left(3 x^{3}+2 x+1\right)+\left(7 x^{2}-x+3\right)=3 x^{3}+7 x^{2}-x+4$
Subtraction: $\left(3 x^{3}+2 x+1\right)-\left(7 x^{2}-x+3\right)=3 x^{3}+7 x^{2}+3 x-2$
Multiplication: $(2 x-3)\left(3 x^{2}-2 x+3\right)=2 x\left(3 x^{2}-2 x+3\right)-3\left(3 x^{2}-2 x+3\right)=6 x^{3}-4 x^{2}+6 x-$ $9 x^{2}+6 x-9=6 x^{3}-13 x^{2}+12 x-9$
Special products: $(a+b)^{2}=a^{2}+2 a b+b^{2} \quad$ NOT $a^{2}+b^{2}!!!$

$$
\begin{aligned}
& (a-b)^{2}=a^{2}-2 a b+b^{2} \quad \text { NOT } a^{2}-b^{2}!!! \\
& a^{2}-b^{2}=(a+b)(a-b)
\end{aligned}
$$

Factoring: Factor of an algebraic expression is one of two or more algebraic expressions whose product is the given algebraic expression; e.g. $x^{2}-4=(x+2)(x-2) .(x+2)$ and $(x-2)$ are factors.

RATIONAL EXPRESSIONS: BASIC OPERATIONS

Rational expressions are fractional expressions whose numerator and denominator are polynomials Simplify:

$$
\frac{x^{2}-6 x+9}{x^{2}-9}=\frac{(x-3)^{2}}{(x+3)(x-3)}=\frac{x-3}{x+3} \text { for all } x \neq \pm 3
$$

Reduce to the lowest terms:

$$
\begin{aligned}
& \frac{6 x^{4}\left(x^{2}+1\right)^{2}-3 x^{2}\left(x^{2}+1\right)^{3}}{x^{6}}=\frac{\left(x^{2}+1\right)^{2}\left[6 x^{4}-3 x^{2}\left(x^{2}+1\right)\right]}{x^{6}}= \\
& =\frac{\left(x^{2}+1\right)^{2} 3 x^{2}\left[2 x^{2}-x^{2}-1\right]}{x^{6}}=\frac{\left(x^{2}+1\right)^{2}\left(x^{2}-1\right)}{x^{4}} \text { for all } x \neq 0
\end{aligned}
$$

Least common denominator: is found as follows: Factor each denominator completely; identify each different prime factor from all the denominators; form a product using each different factor to the highest power that occurs in any one denominator. This product is the LCD.

Example: $\frac{x^{2}}{x^{2}+2 x+1}+\frac{x-1}{3 x+3}-\frac{1}{6}=\frac{x^{2}}{(x+1)^{2}}+\frac{x-1}{3(x+1)}-\frac{1}{6}=$

$$
=\frac{6 x^{2}+2(x+1)(x-1)-(x+1)^{2}}{6(x+1)^{2}}=\frac{7 x^{2}+2 x-3}{6(x+1)^{2}}
$$

More problems:

$$
\begin{array}{lll}
x^{a} x^{b}=x^{a+b} & x^{2} x^{4}=x^{6} & 2^{2} 2^{3}=4.8=32=2^{5} \\
\left(x^{a}\right)^{b}=x^{a b} & \left(x^{2}\right)^{3}=x^{6} & \left(2^{2}\right)^{3}=4^{3}=64=2^{6} \\
x^{-a}=\frac{1}{x^{a}} & x^{-2}=\frac{1}{x^{2}} & 2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \\
x^{1 / 2}=\sqrt{x} & 9^{1 / 2}=\sqrt{9}=3 &
\end{array}
$$

