AAC - Business Mathematics I
Lecture \#11, January 5, 2008
Katarína Kálovcová

11 Combinatorial mathematics

Loosely speaking, combinatorics is a branch of mathematics dealing with counting objects satisfying certain criteria. Since this theory relies on factorials and combinatorial symbols we start with their definitions.

Factorial: For n a natural number, n factorial denoted by n ! is the product of the first n natural numbers. Zero factorial is defined to be 1 .

For n a natural number:

$$
n!=n \times(n-1) \times(n-2) \ldots 2 \times 1
$$

Note that:

$$
n!=n \times(n-1)!
$$

Example:

$$
\begin{aligned}
& 4!=4 \times 3!=4 \times 3 \times 2!=4 \times 3 \times 2 \times 1!=4 \times 3 \times 2 \times 1=24 \\
& \frac{7!}{6!}=\frac{7 \times 6!}{6!}=7 \\
& \frac{6!}{3!} \neq 2!\quad \frac{6!}{3!}=\frac{6 \times 5 \times 4 \times 3!}{3!}=120
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \binom{n}{0}=\binom{n}{n}=1 \quad \text { for all } n \\
& \frac{m!}{n!} \neq\left(\frac{m}{n}\right)! \\
& m!n!\neq(m \times n)!
\end{aligned}
$$

Binomial formula:

$(a+b)^{n} \quad$ appears frequently in probabilistic theory and statistics
$(a+b)^{1}=a+b$
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
$(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$
$(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n} b^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$
where

$$
C_{n, r}={ }_{n} C_{r}=C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad \text { is called combinatorial symbol }
$$

Example: Use binomial formula to expand $(x+y)^{6}$

$$
\begin{aligned}
(a+b)^{6} & =\binom{6}{0} a^{6}+\binom{6}{1} a^{5} b+\binom{6}{2} a^{4} b^{2}+\binom{6}{3} a^{3} b^{3}+\binom{6}{4} a^{2} b^{4}+\binom{6}{5} a b^{5}+\binom{6}{6} b^{6}= \\
& =x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+y^{6}
\end{aligned}
$$

Example: Use binomial formula to expand $(3 p-2 q)^{4}$

$$
\begin{aligned}
(3 p-2 q)^{4} & =\binom{4}{0}(3 p)^{4}+\binom{4}{1}(3 p)^{3}(-2 q)+\binom{4}{2}(3 p)^{2}(-2 q)^{2}+\binom{4}{3} 3 p(-2 q)^{3}+\binom{4}{4}(-2 q)^{4}= \\
& =(3 p)^{4}+4(3 p)^{3}(-2 q)+6(3 p)^{2}(-2 q)^{2}+4(3 p)(-2 q)^{3}+(-2 q)^{4}
\end{aligned}
$$

Example: Use binomial formula to find the fourth and sixteenth term in the expansion of $(x-2)^{20}$

$$
4^{t h}:\binom{20}{3} x^{17}(-2)^{3} \quad 16^{t h}:\binom{20}{15} x^{5}(-2)^{15}
$$

Multiplication principle

Suppose we flip a coin and then throw a single die. What are the possible combined outcomes?

There are 12 possible combined outcomes - two ways in which the coin can come up followed by six ways in which the die can come up.

If the problem is more complicated than this, drawing a diagram is not possible. In such a case, we use the following multiplication principle:

1. If two operations O_{1} and O_{2} are performed in order, with N_{1} possible outcomes for the first operation and N_{2} possible outcomes for the second operation, then there are
$N_{1} \times N_{2}$
possible combined outcomes of the first operation followed by the second.
2. In general, if n operations $O_{1}, O_{2} \ldots O_{n}$ are performed in order, with possible number of outcomes $N_{1}, N_{2} \ldots N_{n}$ respectively, then there are
$N_{1} \times N_{2} \times \ldots \times N_{n}$
possible combined outcomes of the operations performed in the given order.

Example: From the 26 letters in the alphabet, how many ways can 3 letters appear in a row on a license plate if no letter is repeated?

Solution: There are 26 ways the first letter can be chosen. After a first letter is chosen, 25 letters remain; hence there are 25 ways a second letter can be chosen. And after 2 letters are chosen, there are 24 ways a third letter can be chosen. Hence, using the multiplication principle, there are $26 \times 25 \times 24=15600$ possible ways 3 letters can be chosen from the alphabet without allowing any letter to repeat.

Example: Many universities and colleges are now using computer-assisted testing procedures. Suppose a screening test is to consist of 5 questions, and computer stores 5 equivalent questions for the firs test question, 8 equivalent questions for the second, 6 for the third, 5 for the forth, and 10 for the fifth. How many different 5 -question tests can the computer select? Two test are considered different if they differ in one or more questions.

Solution:

O_{1} : Select the first question $\quad N_{1}$: 5 ways
O_{2} : Select the second question N_{2} : 8 ways
O_{3} : Select the third question $\quad N_{3}$: 6 ways
O_{4} : Select the fourth question N_{4} : 5 ways
O_{5} : Select the fifth question $\quad N_{5}$: 10 ways
Thus the computer can generate $5 \times 8 \times 6 \times 5 \times 10=12000$ different tests.
Example: How many 3-letter code words are possible using the first 8 letters of the alphabet if:
(A) No letter can be repeated?
(B) Letters can be repeated?
(C) Adjacent letters cannot be alike?

Solution:

(A) No letter can be repeated.
O_{1} : Select first letter $\quad N_{1}$: 8 ways
O_{2} : Select second letter N_{2} : 7 ways because 1 letter has been used already
O_{3} : Select third letter $\quad N_{3}$: 6 ways because 2 letters have been used already
Thus, there are $8 \times 7 \times 6=336$ possible code words.
(B) Letters can be repeated.
O_{1} : Select first letter $\quad N_{1}$: 8 ways
O_{2} : Select second letter N_{2} : 8 ways repeats are allowed
O_{3} : Select third letter $\quad N_{3}$: 8 ways repeats are allowed
Thus, there are $8 \times 8 \times 8=512$ possible code words.
(C) Adjacent letters cannot be alike.
O_{1} : Select first letter $\quad N_{1}$: 8 ways
O_{2} : Select second letter $N_{2}: 7$ ways cannot be the same as the first
O_{3} : Select third letter $\quad N_{3}: 7$ ways cannot be the same as the second, but can be the same as the first

Thus, there are $8 \times 7 \times 7=392$ possible code words.

Permutations of n Objects:

Example: Suppose 4 pictures are to be arranged from left to right on one wall of an art gallery. How many arrangements are possible? Using the multiplication principle, there are 4 ways of selecting the first picture, 3 ways of selecting the second picture, 2 ways of selecting the third one and only 1 way to select the fourth. Thus the number of arrangements is

$$
4 \times 3 \times 2 \times 1=4!=24
$$

The number of permutations of n objects, denoted by $P_{n, n}$, is given by:

$$
P_{n, n}=n \times(n-1) \times \ldots \times 1=n!
$$

Example: Now suppose that the director of the art gallery decides to use only 2 out of 4 available pictures on the wall, arranged from left to right. How many arrangements of 2 pictures can be formed out of 4 ? There are 4 ways the first picture can be selected. After selecting the first picture, there are 3 ways the second picture can be selected. Thus the number of arrangements of 2 pictures from 4 pictures, denoted be $P_{4,2}$ is given by

$$
P_{4,2}=4 \times 3=\frac{4 \times 3 \times 2!}{2!}=\frac{4!}{2!}=\frac{4!}{(4-2)!}=12
$$

The number of permutations of n objects taken r at a time $(0 \leq r \leq n)$, denoted by $P_{n, r}$, is given by:

$$
P_{n, r}=n \times(n-1) \times \ldots \times(n-3+1)=\frac{n!}{(n-r)!}
$$

Note that if $r=n$, then the number of permutations of n objects taken n at a time is:

$$
P_{n, n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!
$$

Example: From a committee of 8 people, in how many ways can we choose a chair and a vice-chair, assuming one person cannot hold more than one position?

Solution:

$$
P_{8,2}=\frac{8!}{(8-2)!}=\frac{8!}{6!}=\frac{8 \cdot 7 \cdot 6!}{6!}=8 \cdot 7=56
$$

Example: From a committee of 10 people, in how many ways can we choose a chair, a vice-chair and secretary, assuming one person cannot hold more than one position?

Solution:

$$
P_{10,3}=\frac{10!}{(10-3)!}=\frac{10!}{7!}=\frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!}=10 \cdot 9 \cdot 8=720
$$

Combinations:

Now suppose that an art museum owns 8 paintings by a given artist and another art museum wishes to borrow 3 of these paintings for a special show. How many ways can 3 paintings be
selected for shipment out of the 8 available? Here, the order of the items selected doesn't matter. What we are actually interested in is how many subsets of 3 objects can be formed from a set of 8 objects. We call such a subset a combination of 8 objects taken 3 at a time. The total number of combinations is denoted by the symbol

$$
C_{8,3} \quad \text { or } \quad\binom{8}{3}
$$

To find the number of combinations of 8 objects taken 3 at a time, $C_{8,3}$, we make use of the formula for $P_{n, r}$ and the multiplication principle. We know that the number of permutations of 8 objects taken 3 at a time is given by $P_{8,3}$, and we have a formula for computing this quantity. Now, think of $P_{8,3}$ in terms of two operations:
O_{1} : Select a subset of 3 objects
N_{1} : $C_{8,3}$ ways
O_{2} : Arrange the subset in a given order
N_{2} : 3 ! ways
The combined operation O_{1} followed by O_{2} produces a permutation of 8 objects taken 3 at a time. Thus,

$$
\begin{aligned}
& P_{8,3}=C_{8,3} \cdot 3! \\
& \frac{8!}{(8-3)!}=C_{8,3} \cdot 3! \\
& C_{8,3}=\frac{8!}{3!(8-3)!}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3!\cdot 5!}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=56
\end{aligned}
$$

Thus the museum can make 56 different selections of 3 paintings from the 8 available.
The number of combinations of n objects taken r at a time $(0 \leq r \leq n)$, denoted by $C_{n, r}$, is given by:

$$
C_{n, r}=\binom{n}{r}=\frac{P_{n, r}}{r!}=\frac{n!}{r!(n-r)!}
$$

Example: From a committee of 8 people, in how many ways can we choose a subcommittee of 2 people?

Solution: In this example, the ordering does not matter:

$$
C_{8,2}=\binom{8}{2}=\frac{8!}{2!(8-2)!}=\frac{8 \cdot 7 \cdot 6!}{2!\cdot 6!}=\frac{8 \cdot 7}{2}=28
$$

Example: Out of standard 52-card deck (13 cards in each out of 4 suits - hearts, spades, diamonds, clubs), how many 5 -card hands will have 3 aces and 2 kings?

Solution:

O_{1} : Choose 3 aces out of 4 possible Order is not important
$N_{1}: \quad C_{4,3}$
O_{2} : Choose 2 kings out of 4 possible Order is not important N_{2} : $C_{4,2}$

Using multiplication principle we have that the number of hands is:

$$
C_{4,3} \cdot C_{4,2}=4 \cdot 6=24
$$

Example: In a horse race, how many different finishes among the first 3 places are possible for a 10-horse race?

Solution: In this example the ordering matters, so we use permutations:

$$
P_{10,3}=\frac{10!}{(10-3)!}=\frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!}=10 \cdot 9 \cdot 8=720
$$

Example: From a standard 52 -cards deck, how many 5-card hands will have all hearts?
Solution: Here, the order does not matter, we are choosing 5-all-heart-card hands out of 13 heart cards:

$$
C_{13,5}=\binom{13}{5}=\frac{13!}{5!(13-5)!}=\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8!}{5!8!}=\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=13 \cdot 11 \cdot 9=1287
$$

Example: How many ways can 2 people be seated in a row of 5 chairs? 3 people? 4 people? 5 people?

Solution: In this example, the order matters:

$$
\begin{aligned}
& P_{5,2}=\frac{5!}{(5-2)!}=\frac{5 \cdot 4 \cdot 3!}{3!}=20 \\
& P_{5,3}=\frac{5!}{(5-3)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2!}{2!}=60 \\
& P_{5,4}=\frac{5!}{(5-4)!}=\frac{5!}{1}=5!=120 \\
& P_{5,5}=\frac{5!}{(5-5)!}=\frac{5!}{1}=5!=120
\end{aligned}
$$

