

AAC - Business Mathematics I Lecture #1, October 6, 2007 Katarína Kálovcová

1 Numbers and Sets

Set: collection of distinct objects which are called elements (numbers, people, letters of alphabet)

Ways of defining sets:

- list each member of the set (e.g. $\{4,2,15,6\}$, $\{\text{red, blue, white}\},\ldots$)
- rule (e.g. $A = \text{set of even numbers}, B = \{n^2, n \in N, 0 \leq n \leq 5\}, \dots)$

Membership:

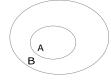
- $4 \in A, 15 \in \{4, 2, 15, 6\}, 16 \in B$
- $5 \notin A$, $5 \notin B$, green $\notin \{$ red, blue, white $\}$

Cardinality: the number of member of a set

- $|A| = \infty$
- |B| = 6
- |C| = 0, where C={three sided squares}

Subsets:

- $A \subseteq B$ if every member of A is in B as well
- if $A \subseteq B$ but $A \neq B$, then A is a proper subset of B, $A \subset B$
- $\{1,2\} \subseteq \{1,2,3,4\}$ and also $\{1,2\} \subset \{1,2,3,4\}$
- $\{1, 2, 3, 4\} \subseteq \{1, 2, 3, 4\}$ but it is not true that $\{1, 2, 3, 4\} \subset \{1, 2, 3, 4\}$
- set of men is a proper subset of the set of all people



Note: $A \subseteq A, \varnothing \subseteq A$ for every set A

Special Sets:

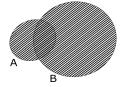
Venn diagram:

P - primes, N - natural numbers, Z - integers, $Q=\{\frac{a}{b},a,b\in Z,b\neq 0\}$ - rational, R - real, I - irrational

 $P \subset N \subset Z \subset Q \subset R$

BASIC OPERATIONS

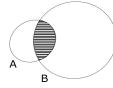
• Union: $A \cup B$ elements that belong to A or B.



Example: $\{1, 2\} \cup \{\text{blue,red}\} = \{1, 2, \text{blue,red}\}$

Properties:

- $A \cup B = B \cup A$
- $A \subseteq A \cup B$
- $A \cup A = A$
- $A \cup \varnothing = A$
- Intersection: $A \cap B$ elements that belong to A and B at the same time.



Example: $\{1, 2\} \cap \{\text{blue,red}\} = \emptyset$ $\{1, 2\} \cap \{1, 2, 4, 7\} = \{2\}$

Properties:

- $A \cap B = B \cap A$
- $A \cap B \subseteq A$
- $A \cap A = A$
- $A \cap \varnothing = \varnothing$

• Difference and Complement: $B \setminus A$ or B - A: set of elements which belong to B, but not to A

In certain settings all sets under discussion are considered to be subsets of a given universal set U. Then, $U \smallsetminus A$ is called complement of A and is denoted A' or A^C

Example: $\{1, 2, \text{green}\} \smallsetminus \{\text{red,white,green}\} = \{1, 2\}$ $\{1, 2\} \smallsetminus \{1, 2\} = \emptyset$ Integers \smallsetminus Even numbers = Odd numbers

Properties:

 $-A \cup A^{C} = U$ $-A \cap A^{C} = \emptyset$ $-(A^{C})^{C} = A$ $-A \smallsetminus A = \emptyset$ $-A \leftthreetimes B = A \cap B^{C}$

• Cartesian product: $A \times B$ combining every element from A with every element from B; set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$.

Example: $\{1, 2\} \times \{\text{red, white, blue}\} = \{(1, \text{red}), (1, \text{white}), (1, \text{blue}), (2, \text{red}), (2, \text{white}), (2, \text{blue})\}$

Properties:

 $-A \times \emptyset = \emptyset$ $-A \times (B \cup C) = (A \times B) \cup (A \times C)$

Some identities:

- $\bullet \ A\smallsetminus B = A\cap B^C$
- $(A \cup B)^C = A^C \cap B^C$
- $(A \cap B)^C = A^C \cup B^C$

Numbers

Real numbers (R) - represented on real line with origin 0 Intervals - subsets of a real line

closed - e.g. [2,5] - 2 and 5 belong to the interval open - e.g. (3,9) - 3 and 9 do not belong to the interval **Intersection** - $[-4,1] \cap [0,2) = [0,1]$ **Union** - $[-4,1] \cup [0,2) = [-4,2)$

Logic

A simple statement - one that does not contain any other statement as a part (p, q) can be true or false; if p is true then "NOT p" or " ~ p" or "]p" is false)

A compound statement - one with two or more simple statements as parts

An operator - joins simple statements into compounds

Compound statements:

statement	symbol	how we read it	
Conjunction	$p \wedge q$	both p and q are true	
Disjunction	$p \lor q$	either p or q is true or both	
Implication	$p \Rightarrow q$	if p is true then q is true	
Equivalence	$p \Leftrightarrow q$	p and q are either both true or both false	

Every statement has its truth value, i.e. every statement is either true or false. Truth value of a compound statement can be derived based on truth values of its parts (simple statements)

Truth table - complete list of the possible truth values of a statement:

р	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Examples: Look at the 3^{rd} column and 3^{rd} row in the table above. Interpretation: if p is true and q is false, than conjunction is false; e.g.: A day has 24 hours and an hour has 70 minutes. Here, p is "A day has 24 hours" and q is "an hour has 70 minutes". p is true, q is false and the compound statement - conjunction - is false, because conjunction requires both simple statements to be true ("p and q" means p is true and at the same time q is true).

Now, let's look at the 5th column and 4th row in the table above. Interpretation: if p is false and q is true, than implication is true; e.g.: If it doesn't rain, I'll go out with you. Here, p is "it doesn't rain" and q is "I'll go out with you". I make a promise to go out only if it does not rain, I don't say a word about what I'll do if it does rain. So $false \Rightarrow true$ is a true statement as well as $false \Rightarrow false$. The only case when implication is false is $true \Rightarrow false$ - it does not rain, but I will not go out. This is the only case when the original statement was a lie.

Examples: Statements and their negations:

- Today it is Sunday \Leftrightarrow Today it is not Sunday
- All people have black hair \Leftrightarrow At least one person does not have black hair
- At least one student is a girl \Leftrightarrow None of students is a girl
- John and Susan are sick \Leftrightarrow Either John or Susan is not sick
- \bullet If a firm has smart CEO then it makes a profit \Leftrightarrow Firm has smart CEO and it does not make a profit
- Profit of Microsoft is either \$1000 or $5000 \Leftrightarrow$ Profit of Microsoft is neither \$1000 nor \$5000