AAC - Business Mathematics I
Lecture \#1, October 6, 2007
Katarína Kálovcová

1 Numbers and Sets

Set: collection of distinct objects which are called elements (numbers, people, letters of alphabet)

Ways of defining sets:

- list each member of the set (e.g. $\{4,2,15,6\}$, $\{$ red, blue, white $\}, \ldots$)
- rule (e.g. $A=$ set of even numbers, $B=\left\{n^{2}, n \in N, 0 \leqq n \leqq 5\right\}, \ldots$)

Membership:

- $4 \in A, 15 \in\{4,2,15,6\}, 16 \in B$
- $5 \notin A, 5 \notin B$, green $\notin\{$ red, blue, white $\}$

Cardinality: the number of member of a set

- $|A|=\infty$
- $|B|=6$
- $|C|=0$, where $\mathrm{C}=\{$ three sided squares $\}$

Subsets:

- $A \subseteq B$ if every member of A is in B as well
- if $A \subseteq B$ but $A \neq B$, then A is a proper subset of $\mathrm{B}, A \subset B$
- $\{1,2\} \subseteq\{1,2,3,4\}$ and also $\{1,2\} \subset\{1,2,3,4\}$
- $\{1,2,3,4\} \subseteq\{1,2,3,4\}$ but it is not true that $\{1,2,3,4\} \subset\{1,2,3,4\}$
- set of men is a proper subset of the set of all people

Venn diagram:

Note: $A \subseteq A, \varnothing \subseteq A$ for every set A

Special Sets:

P - primes, N - natural numbers, Z - integers, $Q=\left\{\frac{a}{b}, a, b \in Z, b \neq 0\right\}$ - rational, R - real, I irrational
$P \subset N \subset Z \subset Q \subset R$

BASIC OPERATIONS

- Union: $A \cup B$ elements that belong to A or B.

Example: $\{1,2\} \cup\{$ blue,red $\}=\{1,2$, blue,red $\}$

Properties:

- $A \cup B=B \cup A$
$-A \subseteq A \cup B$
- $A \cup A=A$
- $A \cup \varnothing=A$
- Intersection: $A \cap B$ elements that belong to A and B at the same time.

Example: $\{1,2\} \cap\{$ blue,red $\}=\varnothing$

$$
\{1,2\} \cap\{1,2,4,7\}=\{2\}
$$

Properties:

- $A \cap B=B \cap A$
- $A \cap B \subseteq A$
- $A \cap A=A$
- $A \cap \varnothing=\varnothing$
- Difference and Complement: $B \backslash A$ or $B-A$: set of elements which belong to B, but not to A
In certain settings all sets under discussion are considered to be subsets of a given universal set U. Then, $U \backslash A$ is called complement of A and is denoted A^{\prime} or A^{C}

Example: $\{1,2$, green $\} \backslash\{$ red,white,green $\}=\{1,2\}$
$\{1,2\} \backslash\{1,2\}=\varnothing$
Integers \backslash Even numbers $=$ Odd numbers

Properties:

- $A \cup A^{C}=U$
- $A \cap A^{C}=\varnothing$
- $\left(A^{C}\right)^{C}=A$
- $A \backslash A=\varnothing$
- $A \backslash B=A \cap B^{C}$
- Cartesian product: $A \times B$ combining every element from A with every element from B; set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$.
Example: $\{1,2\} \times\{$ red, white,blue $\}=\{(1$, red $),(1$, white $),(1$, blue $),(2$, red $),(2$, white $),(2$, blue $)\}$

Properties:

- $A \times \varnothing=\varnothing$
- $A \times(B \cup C)=(A \times B) \cup(A \times C)$

Some identities:

- $A \backslash B=A \cap B^{C}$
- $(A \cup B)^{C}=A^{C} \cap B^{C}$
- $(A \cap B)^{C}=A^{C} \cup B^{C}$

Numbers

complex (C) - imaginary

Real numbers (R) - represented on real line with origin 0
Intervals - subsets of a real line
closed - e.g. [2,5] - 2 and 5 belong to the interval
open - e.g. $(3,9)-3$ and 9 do not belong to the interval
Intersection - $[-4,1] \cap[0,2)=[0,1]$
Union - $[-4,1] \cup[0,2)=[-4,2)$

Logic

A simple statement - one that does not contain any other statement as a part (p, q, can be true or false; if p is true then "NOT p " or " $\sim p$ " or " $\rceil p$ " is false)

A compound statement - one with two or more simple statements as parts
An operator - joins simple statements into compounds

Compound statements:

statement	symbol	how we read it
Conjunction	$p \wedge q$	both p and q are true
Disjunction	$p \vee q$	either p or q is true or both
Implication	$p \Rightarrow q$	if p is true then q is true
Equivalence	$p \Leftrightarrow q$	p and q are either both true or both false

Every statement has its truth value, i.e. every statement is either true or false. Truth value of a compound statement can be derived based on truth values of its parts (simple statements)

Truth table - complete list of the possible truth values of a statement:

p	q	$p \wedge q$	$p \vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

Examples: Look at the $3^{\text {rd }}$ column and $3^{\text {rd }}$ row in the table above. Interpretation: if p is true and q is false, than conjunction is false; e.g.: A day has 24 hours and an hour has 70 minutes. Here, p is "A day has 24 hours" and q is "an hour has 70 minutes". p is true, q is false and the compound statement - conjunction - is false, because conjunction requires both simple statements to be true (" p and q " means p is true and at the same time q is true).
Now, let's look at the $5^{\text {th }}$ column and $4^{\text {th }}$ row in the table above. Interpretation: if p is false and q is true, than implication is true; e.g.: If it doesn't rain, I'll go out with you. Here, p is "it doesn't rain" and q is "I'll go out with you". I make a promise to go out only if it does not rain, I don't say a word about what I'll do if it does rain. So false \Rightarrow true is a true statement as well as false \Rightarrow false. The only case when implication is false is true \Rightarrow false - it does not rain, but I will not go out. This is the only case when the original statement was a lie.

Examples: Statements and their negations:

- Today it is Sunday \nLeftarrow Today it is not Sunday
- All people have black hair \nLeftarrow At least one person does not have black hair
- At least one student is a girl \nLeftarrow None of students is a girl
- John and Susan are sick \nLeftarrow Either John or Susan is not sick
- If a firm has smart CEO then it makes a profit \nLeftarrow Firm has smart CEO and it does not make a profit
- Profit of Microsoft is either $\$ 1000$ or $\$ 5000 \nLeftarrow$ Profit of Microsoft is neither $\$ 1000$ nor $\$ 5000$

