

AAU - Business Mathematics I Problem set #3, Due April 22, 2010 - Suggested Solution

1. Suppose that you need \$ 14500 for a new car which you want to buy in 5 years. In your bank the annual rate is 7% and it is compounded annually. How much money do you have to deposit today to be able to afford your car in 5 years?

Solution:

$$A = P(1+r)^{t}$$

$$14500 = P(1+0.07)^{5}$$

$$P = \frac{14500}{(1+0.07)^{5}} \approx 10338$$

- 2. Solve the following exponential equations:
 - (a) $7^{3x+1} = 49^x$
 - (b) $2^{x^2 7x + 10} = 2^{2x 10}$
 - (c) $3^{x^2-3x+2} = 1$

Solution:

(a)
$$7^{3x+1} = 49^x$$

 $7^{3x+1} = 7^{2x}$
 $3x + 1 = 2x$
 $x = -1$
(b) $2^{x^2 - 7x + 10} = 2^{2x - 10}$
 $x^2 - 7x + 10 = 2x - 10$
 $x^2 - 9x + 20 = 0$
 $D = b^2 - 4ac = 81 - 80 = 1$
 $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{9 \pm 1}{2} = 4,5$

(c)
$$3^{x^2-3x+2} = 1$$

 $3^{x^2-3x+2} = 3^0$
 $x^2 - 3x + 2 = 0$
 $x_{1,2} = \frac{3 \pm \sqrt{(-3)^2 - 4 \times 2}}{2} = \frac{3 \pm 1}{2} = 1, 2$

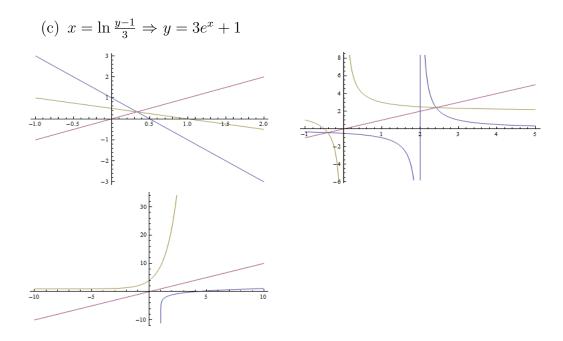
3. Solve the following logarithmic equations:

- (a) $\log_2 1 = \log_2 3x 4$
- (b) $10^{\log_{10}(x+2)} = x^2 4$
- (c) $\log_{10} |x 3| = \log_{10} 1$

Solution:

(a)
$$\log_2 1 = \log_2 3x - 4$$

 $0 = \log_2 3x - 4$
 $4 = \log_2 3x$
 $2^4 = 3x$
 $x = \frac{16}{3}$
(b) $10^{\log_{10}(x+2)} = x^2 - 4$
 $x + 2 = x^2 - 4$
 $x^2 - x - 6 = 0$
 $D = b^2 - 4ac = 1 + 24 = 25$
 $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{1 \pm \sqrt{25}}{2} = 3, -2$


 $\mathchar`-2$ can not be a solution, because logarithm is only defined for positive numbers

(c)
$$\log_{10} |x - 3| = \log_{10} 1$$

 $|x - 3| = 1$
 $x - 3 = \pm 1$
 $x_{1,2} = 2, 4$

- 4. Find inverse to the following functions and sketch both (function and its inverse) graphically.
 - (a) y = 1 2x
 - (b) $y = \frac{1}{x-2}$
 - (c) $y = \ln \frac{x-1}{3}$

Solution:

- (a) $x = 1 2y \Rightarrow y = \frac{1-x}{2}$
- (b) $x = \frac{1}{y-2} \Rightarrow y = \frac{1}{x} + 2$

- 5. Decompose the following functions to the most elementary functions.
 - (a) $y = (x+1)^2$ (b) $y = \frac{1}{x-2}$ (c) $y = \frac{1}{(x+1)^2}$

Solution:

(a)
$$y = f(g(x)), \quad f(x) = x^2, \quad g(x) = x + 1$$

(b) $y = f(g(x)), \quad f(x) = \frac{1}{x}, \quad g(x) = x - 2$
(c) $y = f(g(h(x))), \quad f(x) = \frac{1}{x}, \quad g(x) = x^2, \quad h(x) = x + 1$

6. $f(x) = e^x$, g(x) = 3x, $h(x) = \frac{1}{x}$. Find the following composite functions:

- (a) f(g(x))
- (b) h(h(x))
- (c) h(g(f(x)))

Solution:

(a) $f(g(x)) = f(3x) = e^{3x}$

(b)
$$h(h(x)) = h\left(\frac{1}{x}\right) = \frac{1}{\frac{1}{x}} = x$$

(c) $h(g(f(x))) = h(g(e^x)) = h(3e^x) = \frac{1}{3e^x}$