

AAU - Business Mathematics I

Problem set \#3, Due April 22, 2010 - Suggested Solution

1. Suppose that you need $\$ 14500$ for a new car which you want to buy in 5 years. In your bank the annual rate is 7% and it is compounded annually. How much money do you have to deposit today to be able to afford your car in 5 years?

Solution:

$$
\begin{aligned}
& A=P(1+r)^{t} \\
& 14500=P(1+0.07)^{5} \\
& P=\frac{14500}{(1+0.07)^{5}} \approx 10338
\end{aligned}
$$

2. Solve the following exponential equations:
(a) $7^{3 x+1}=49^{x}$
(b) $2^{x^{2}-7 x+10}=2^{2 x-10}$
(c) $3^{x^{2}-3 x+2}=1$

Solution:

(a) $7^{3 x+1}=49^{x}$

$$
7^{3 x+1}=7^{2 x}
$$

$$
3 x+1=2 x
$$

$$
x=-1
$$

(b) $2^{x^{2}-7 x+10}=2^{2 x-10}$
$x^{2}-7 x+10=2 x-10$
$x^{2}-9 x+20=0$
$D=b^{2}-4 a c=81-80=1$
$x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{9 \pm 1}{2}=4,5$
(c) $\quad 3^{x^{2}-3 x+2}=1$
$3^{x^{2}-3 x+2}=3^{0}$
$x^{2}-3 x+2=0$
$x_{1,2}=\frac{3 \pm \sqrt{(-3)^{2}-4 \times 2}}{2}=\frac{3 \pm 1}{2}=1,2$
3. Solve the following logarithmic equations:
(a) $\log _{2} 1=\log _{2} 3 x-4$
(b) $10^{\log _{10}(x+2)}=x^{2}-4$
(c) $\log _{10}|x-3|=\log _{10} 1$

Solution:

(a) $\quad \log _{2} 1=\log _{2} 3 x-4$
$0=\log _{2} 3 x-4$
$4=\log _{2} 3 x$
$2^{4}=3 x$
$x=\frac{16}{3}$
(b) $\quad 10^{\log _{10}(x+2)}=x^{2}-4$
$x+2=x^{2}-4$
$x^{2}-x-6=0$
$D=b^{2}-4 a c=1+24=25$
$x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{1 \pm \sqrt{25}}{2}=3,-2$
-2 can not be a solution, because logarithm is only defined for positive numbers
(c) $\quad \log _{10}|x-3|=\log _{10} 1$
$|x-3|=1$
$x-3= \pm 1$
$x_{1,2}=2,4$
4. Find inverse to the following functions and sketch both (function and its inverse) graphically.
(a) $y=1-2 x$
(b) $y=\frac{1}{x-2}$
(c) $y=\ln \frac{x-1}{3}$

Solution:

(a) $x=1-2 y \Rightarrow y=\frac{1-x}{2}$
(b) $x=\frac{1}{y-2} \Rightarrow y=\frac{1}{x}+2$
(c) $x=\ln \frac{y-1}{3} \Rightarrow y=3 e^{x}+1$

5. Decompose the following functions to the most elementary functions.
(a) $y=(x+1)^{2}$
(b) $y=\frac{1}{x-2}$
(c) $y=\frac{1}{(x+1)^{2}}$

Solution:

(a) $y=f(g(x)), \quad f(x)=x^{2}, \quad g(x)=x+1$
(b) $y=f(g(x)), \quad f(x)=\frac{1}{x}, \quad g(x)=x-2$
(c) $y=f(g(h(x))), \quad f(x)=\frac{1}{x}, \quad g(x)=x^{2}, \quad h(x)=x+1$
6. $f(x)=e^{x}, g(x)=3 x, h(x)=\frac{1}{x}$. Find the following composite functions:
(a) $f(g(x))$
(b) $h(h(x))$
(c) $h(g(f(x)))$

Solution:

(a) $f(g(x))=f(3 x)=e^{3 x}$
(b) $h(h(x))=h\left(\frac{1}{x}\right)=\frac{1}{\frac{1}{x}}=x$
(c) $h(g(f(x)))=h\left(g\left(e^{x}\right)\right)=h\left(3 e^{x}\right)=\frac{1}{3 e^{x}}$

