

AAU - Business Mathematics I
Problem set \#2, Due March 18, 2010 - Suggested Solution

1. Solve the following linear equations:
(a) $10 x+5=8 x+11$
(b) $-2 x-4=-3 x+2$

Solution:

(a)
$10 x+5=8 x+11 /-8 x$
$10 x-8 x+5=11 /-5$
$2 x=6 / \div 5$
$x=3$
(b)
$-2 x-4=-3 x+2 /+3 x$
$-2 x+3 x-4=2 \quad /+4$
$x=2+4=6$
2. Solve the following systems of linear equations:
(a) $3 x+2 y=7$
$7 x-y=5$
(b) $2 x+3 y=0$
$-2 / 3 x-y=1$

Solution: We will use elimination method for (a) and substitution method for (b).
(a)
$3 x+2 y=7$
$\frac{7 x-y=5}{3 x+2 y=7} / \times 2$
$\frac{14 x-2 y=10}{3 x+2 y+14 x}-2 y=7+10$
$17 x=17$
$x=1$ Plugging 1 for x to one of the two original equations gives us that $y=2$
$\Rightarrow x=1, y=2$
(b)
$2 x+3 y=0$
$\frac{-2 / 3 x-y=1}{2 x+3(-2 / 3 x-1)=0 \Rightarrow 2 x-2 x-3=0 \Rightarrow-3=0} 40$ plug this to the first equation
This is never true, i.e. this system of equations does not have solution
3. Solve:
(a) $2 x^{2}-3 x+1=0$
(b) $x^{2}-2 x-8=0$
(c) $2 x^{2}-32=0$
(d) $(x-3)(x+1)=0$

Solution:

(a) $2 x^{2}-3 x+1=0 \quad a=2, b=-3, c=1$
$D=b^{2}-4 a c=(-3)^{2}-4 \times 2 \times 1=9-8=1$
$x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{3 \pm \sqrt{1}}{4}=1, \frac{1}{2}$
(b) $x^{2}-2 x-8=0 \quad a=1, b=-2, c=-8$
$D=b^{2}-4 a c=(-2)^{2}-4 \times 1 \times(-8)=4+32=36$
$x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{2 \pm \sqrt{36}}{2}=\frac{2 \pm 6}{2}=-2,4$
(c) $2 x^{2}-32=0 \quad a=2, b=0, c=-32$
$2 x^{2}=32 \quad \Rightarrow \quad x^{2}=16 \quad \Rightarrow \quad x= \pm 4$
(d) $(x-3)(x+1)=0$ the product is 0 iff at least one expression in the product is 0 $(x-3)=0$ or $(x+1)=0 \quad \Rightarrow \quad x=-1,3$
4. Solve the following inequalities:
(a) $2 x-3<x+1 \leq 6$
(b) $-x^{2}-x+2>0$
(c) $x^{2}-3 x+2>0$

Solution:

(a) $2 x-3<x+1$ and $x+1 \leq 6$

$$
\begin{array}{rll}
-3-1<x-2 x & \text { and } & x \leq 6-1 \\
-4<-x & \text { and } & x \leq 5 \\
4>x & \text { and } & x \leq 5 \\
\Rightarrow x \in(-\infty, 4) & &
\end{array}
$$

(b) $-x^{2}-x+2>0$

$$
x^{2}+x-2<0
$$

First, we solve the corresponding quadratic equation:

$$
\begin{aligned}
& x^{2}+x-2=0 \\
& D=b^{2}-4 a c=1-4 \times 1 \times(-2)=9 \\
& x_{1,2}=\frac{-1 \pm 3}{2}=-2,1
\end{aligned}
$$

Now, we get back to the original inequality. We look for such values of x that $x^{2}+x-2<0$, i.e. for such values of x for which the graph of the quadratic function is below the axis x . Therefore the solution to our quadratic inequality is $x \in(-2,1)$.
(c) $x^{2}-3 x+2>0$

First, we solve the corresponding quadratic equation:

$$
\begin{aligned}
& x^{2}-3 x+2=0 \\
& D=b^{2}-4 a c=9-4 \times 1 \times(2)=1 \\
& x_{1,2}=\frac{3 \pm 1}{2}=1,2
\end{aligned}
$$

Now, we get back to the original inequality. We look for such values of x that $x^{2}-3 x+2>0$, i.e. for such values of x for which the graph of the quadratic function is above the axis x . Therefore the solution to our quadratic inequality is $x \in(-\infty, 1) \cup(2, \infty)$.
5. Ben can drink 3 beers per hour. How many hours did he spend in the pub yesterday night if he drank either at most 12 or at least 15 beers?

Solution: Let's denote number of hours spent in the pub as x. Than we know that the number of beers is $3 x$. So we have:
either $3 x \leq 12 \Leftrightarrow x \leq 4$
or $3 x \geq 15 \Leftrightarrow x \geq 5$
Ben spent in the pub at most 4 or at least 5 hours.
6. Solve:
(a) $|x-3|-2=0$
(b) $|x-2|-|x+1|+3=0$
(c) $|x+1|<4$
(d) $\frac{2-2 x}{1-x} \leq 1$

Solution:

(a) $|x-3|-2=0$
$x-3= \pm 2$
$x=1,5$
(b) $|x-2|-|x+1|+3=0$

- $x-2>0 \Leftrightarrow x>2$
- $x-2<0 \Leftrightarrow x<2$
- $x+1>0 \Leftrightarrow x>-1$
- $x+1>0 \Leftrightarrow x<-1$

We divide this problem into three subcases:

1. $x \in(-\infty,-1] \quad-x+2+x+1+3=0$

$$
6=0
$$

This is not true for any value of x. This means that there is no solution in this subcase.
2. $x \in[-1,2] \quad-x+2-x-1+3=0$

$$
-2 x+4=0 \Rightarrow x=2
$$

$2 \in[-1,2]$ so this is a solution.
3. $x \in[2, \infty) \quad x-2-x-1+3=0$

$$
0=0
$$

This holds for all values of x, however, this equation is valid only for $x \in[2, \infty)$. So solution in the last subcase is $x \in[2, \infty)$.
(c) $|x+1|<4$

$$
-4<x+1<4
$$

$$
-4-1<x<4-1
$$

$$
-5<x<3
$$

$$
x \in(-5,3)
$$

$$
\text { (d) } \begin{aligned}
& \frac{2-2 x}{1-x} \leq 1 \\
& \frac{2-2 x}{1-x}-1 \leq 0 \\
& \frac{2-2 x}{1-x}-\frac{1-x}{1-x} \leq 0 \\
& \frac{2-2 x-(1-x)}{1-x} \leq 0 \\
& \frac{1-x}{1-x} \leq 0 \\
& 1 \leq 0
\end{aligned}
$$

This is never true, therefore this inequality does not have any solution.

