AAU - Business Mathematics I
Lecture \#9, April 15, 2010

Problem: Find the inverse of the function y if:
(c) $y=\sqrt{x+1}$
(d) $y=\ln \frac{x}{2}$
(e) $y=e^{\left(\frac{1}{3} x-2\right)}$

Solution: We find inverse functions in two steps: first, we switch x for y and second we rearrange terms in the equation such that again y is on the left hand side and everything else on the right hand side.
(c) $y=\sqrt{x+1} \rightarrow x=\sqrt{y+1} \Rightarrow y=x^{2}-1$
(d) $y=\ln \frac{x}{2} \rightarrow x=\ln \frac{y}{2} \quad \Rightarrow \quad y=2 e^{x}$
(e) $y=e^{\left(\frac{1}{3} x-2\right)} \quad \rightarrow \quad x=e^{\left(\frac{1}{3} y-2\right)} \Rightarrow y=3(\ln x+2)$

10.3 Function composition

The function composition of two or more functions takes the output of one or more functions as the input of others. The functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ can be composed by first applying f to an argument x to obtain $y=f(x)$ and then applying g to y to obtain $z=g(y)$. The composite function formed in this way from general f and g may be written $x \rightarrow g(f(x))$.

The function on the right acts first and the function on the left acts second, reversing English reading order. We remember the order by reading the notation as g of f. The order is important, because rarely do we get the same result both ways. For example, suppose $f(x)=x^{2}$ and $g(x)=$ $x+1$. Then $g(f(x))=x^{2}+1$, while $f(g(x))=(x+1)^{2}$, which is $x^{2}+2 x+1$, a different function.

Problem: If $f(x)=x^{2}+3$ and $g(x)=3 x-1$ then find the following: $(f+g)(x) ;(f+g)(3)$; $f(g(x)) ; g(f(x)) ; f(g(2))$ and $g(f(3))$

Solution:

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x)=x^{2}+3+3 x-1=x^{2}+3 x+2 \\
& (f+g)(3)=x^{2}+3 x+\left.2\right|_{x=3}=3^{2}+3 \times 3+2=20 \\
& f(g(x))=f(3 x-1)=(3 x-1)^{2}+3=9 x^{2}-6 x+1+3=9 x^{2}-6 x+4 \\
& g(f(x))=g\left(x^{2}+3\right)=3\left(x^{2}+3\right)-1=3 x^{2}+8 \\
& f(g(2))=9 x^{2}-6 x+\left.4\right|_{x=2}=36-12+4=28 \\
& g(f(3))=3 x^{2}+\left.8\right|_{x=3}=27+8=35
\end{aligned}
$$

Problem: Find $f(f(f(x)))$ if:

$$
f(x)=\frac{1}{1-x}
$$

Solution:

$$
f(x)=\frac{1}{1-\frac{1}{1-\frac{1}{1-x}}}
$$

Problem: Decompose the following functions:

$$
\begin{aligned}
& y=2^{x+1} \\
& y=(x+2)^{2}-3 \\
& y=(2 x-5)^{10} \\
& y=\ln \frac{1}{\sqrt{x+2}}
\end{aligned}
$$

Solution:

$y=g(f(x))$ where $f(x)=x+1 ; g(x)=2^{x}$
$y=h(g(f(x)))$ where $f(x)=x+2 ; g(x)=x^{2} ; h(x)=x-3$
$y=h(g(f(x)))$ where $f(x)=2 x ; g(x)=x-5 ; h(x)=x^{10}$
$y=i(h(g(f(x))))$ where $f(x)=x+2 ; g(x)=\sqrt{x} ; h(x)=\frac{1}{x} ; i(x)=\ln x$

