1 Numbers and Sets

1.1 Sets

Set: collection of distinct objects which are called elements (numbers, people, letters of alphabet)

Two ways of defining sets:

• list each member of the set (e.g. {4,2,15,6}, {red, blue, white}, ...)

The order in which the elements of a set are listed is irrelevant, as are any repetitions in the list. For example,

$$\{6,11\} = \{11,6\} = \{11,11,6,11\}$$

are equivalent, because the specification means merely that each of the elements listed is a member of the set.

• rule (e.g. $A = \text{set of even numbers}, B = \{n^2, n \in \mathbb{N}, 0 \leq n \leq 5\}, \ldots$)

Membership: some elements belong to a set and some do not

- $4 \in A$, $15 \in \{4, 2, 15, 6\}$, $16 \in B$ (read " \in " as "belongs to")
- $5 \notin A$, $5 \notin B$, green $\notin \{\text{red, blue, white}\}\ (\text{read "\notin" as "does not belong to"})$

Cardinality: the number of members of a set

- $|A| = \infty$ (The set A has infinitely many elements)
- |B| = 6 (The set B has six elements)
- |C| = 0, where C={three sided squares} (The set C is an empty set)

Subsets:

- $A \subseteq B$ if every member of A is in B as well (A is subset of B)
- if $A \subseteq B$ but $A \neq B$, then A is a proper subset of B, $A \subset B$
- $\{1,2\} \subseteq \{1,2,3,4\}$ and also $\{1,2\} \subset \{1,2,3,4\}$
- \bullet $\{1,2,3,4\}\subseteq\{1,2,3,4\}$ but it is not true that $\{1,2,3,4\}\subset\{1,2,3,4\}$
- set of men is a proper subset of the set of all people

Venn diagram:

Note: $A \subseteq A$, $\varnothing \subseteq A$ for every set A

Special Sets:

P - primes, N - natural numbers, Z - integers, $Q=\{\frac{a}{b},a,b\in Z,b\neq 0\}$ - rational, R - real, I - irrational

$$P\subset N\subset Z\subset Q\subset R$$

1.2 Basic Operations on Sets

There are ways to construct new sets from existing ones. Two sets can be "added" together, "subtracted", etc.

• Union: $A \cup B$ elements that belong to A or B.

Example: $\{1,2\} \cup \{\text{blue,red}\} = \{1,2,\text{blue,red}\}$

Properties:

- $-A \cup B = B \cup A$
- $-A \subseteq A \cup B$
- $-A \cup A = A$
- $-A \cup \varnothing = A$
- Intersection: $A \cap B$ elements that belong to A and B at the same time.

Example: $\{1,2\} \cap \{\text{blue},\text{red}\} = \emptyset$ $\{1,2\} \cap \{1,2,4,7\} = \{2\}$

Properties:

- $-A\cap B=B\cap A$
- $A \cap B \subseteq A$
- $-A \cap A = A$
- $A \cap \varnothing = \varnothing$
- If $A \cap B = \emptyset$, then A and B are said to be disjoint.
- Difference and Complement: $B \setminus A$ or B A: set of elements which belong to B, but not to A

In certain settings all sets under discussion are considered to be subsets of a given universal set U. Then, $U \setminus A$ is called complement of A and is denoted A' or A^C

Example: $\{1, 2, \text{green}\} \setminus \{\text{red,white,green}\} = \{1, 2\}$

$$\{1,2\}\smallsetminus\{1,2\}=\varnothing$$

 ${\rm Integers} \smallsetminus {\rm Even~numbers} = {\rm Odd~numbers}$

Properties:

-
$$A \cup A^C = U$$

-
$$A \cap A^C = \varnothing$$

$$-(A^C)^C = A$$

$$-A \setminus A = \emptyset$$

$$-A \setminus B = A \cap B^C$$

Some identities:

$$\bullet \ A \smallsetminus B = A \cap B^C$$

$$\bullet \ (A \cup B)^C = A^C \cap B^C$$

$$\bullet \ (A \cap B)^C = A^C \cup B^C$$

Exercise 1: Do the following identities hold? You can find the answers to exercises at the end of this chapter.

(a)
$$(A \cap B) \cup (A \cap C) = A \cap (B \cup C)$$

(b)
$$(A \cap B^C) \cup C = A \cap B$$

1.3 Numbers

Real numbers (R): represented on real line with origin 0

Intervals: subsets of a real line

closed - e.g. [2,5] - 2 and 5 belong to the interval open - e.g. (3,9) - 3 and 9 do not belong to the interval

Intersection: $[-4,1] \cap [0,2) = [0,1]$

Union: $[-4,1] \cup [0,2) = [-4,2)$

Example:

•
$$A = [-5, 3], B = [1, 10] \rightarrow A \cap B = [1, 3], A \cup B = [-5, 10]$$

•
$$A = (-\infty, 2), B = (0, 4] \rightarrow A \cap B = (0, 2), A \cup B = (-\infty, 4]$$

•
$$A = [-2, 8], B = (3, 10), C = (9, 15) \rightarrow A \cap B \cap C = \emptyset, A \cup B \cup C = [-2, 15)$$

Exercise 2: Find intercept and union of the following intervals:

•
$$A = (0,7], B = [1,6]$$

$$\bullet \ \ A = [-3,4], B = (3,10), C = (-1,7)$$

1.4 Answers

Exercise 1: The identity (a) holds and the identity (b) does not hold (to see this draw Venn diagrams).

Exercise 2:

•
$$A = (0,7], B = [1,6] \rightarrow A \cap B = [1,6], A \cup B = (0,7]$$

•
$$A = [-3, 4], B = (3, 10), C = (-1, 7) \rightarrow A \cap B \cap C = (3, 4], A \cup B \cup C = [-3, 10)$$

2 Logic

2.1 Simple Statement, Negation

A statement - a declarative sentence that is either true or false.

A simple statement - one that does not contain any other statement as a part.

Examples of sentences that are (or make) statements:

- "Socrates is a man."
- "A triangle has three sides."
- "Paris is the capital of England."

The first two (make statements that) are true, the third is (or makes a statement that is) false.

Examples of sentences that are not (or do not make) statements:

- "Who are you?"
- "Run!"

Negation - In logic and mathematics, negation or "not" is an operation on logical values, which changes true to false and false to true. Intuitively, the negation of a proposition holds exactly when that proposition does not hold.

Notation: statement - p, can be true or false; if p is true then "NOT p" or " \sim p" or " \mid p" is false.

Examples of negations of previous statements:

- "Socrates is not a man." or "Socrates is a woman."
- "A triangle does not have three sides." or "A triangle has at most two or at least four sides."
- "Paris is not the capital of England."

Notation: \forall - for all/every/each; \exists - there exists/at least one

Examples: A is a set of all natural numbers larger than 10: $A = \{ \forall x \in N; x > 10 \}$

There exists at least one number for which the square root is negative: $\exists x; \sqrt{x} < 0$

Examples: Decide if the following statements are true or false and find negations:

- Math teacher is nice. True. Math teacher is not nice.
- There are **no** unemployed people in the CR. False. There is **at least** one unemployed person in the CR.
- At least four students in class are women. True (most of the time). At most three/less than four students in class are women.
- Today is Tuesday. False (depends on when you read this material). Today is not Tuesday.

Exercise 1: Decide if the following statements are true or false and find negations:

- At most three students have blue eyes.
- Every day has 25 hours.
- All cars are red.
- The semester begins today.