

AAU - Business Mathematics I

Problem set \#3, Due April 10, 2010 - Suggested Solution

1. Solve the following inequalities:
(a) $x^{2}+4 x+10 \leq 0$
(b) $-x^{2}-4 x-10<0$
(c) $\frac{2}{x-5}>0$
(d) $\frac{2 x}{x-10} \leq 0$

Solution:

$$
\text { (a) } \begin{aligned}
& x^{2}+4 x+10 \leq 0 \\
& x^{2}+4 x+10=0 \\
& D=b^{2}-4 a c=16-40<0
\end{aligned}
$$

Discriminant is negative, this means that quadratic equation does not have any solution or, in other words, parabola has no intercepts with horizontal axis $-x$. Since " a " $=1$ is positive, the whole parabola lies above the horizontal axis x. So there are no such values of x for which $x^{2}+4 x+10 \leq 0$. There is no solution to this quadratic inequality.

$$
\text { (b) } \begin{aligned}
& -x^{2}-4 x-10<0 \\
& -x^{2}-4 x-10=0 \\
& D=b^{2}-4 a c=16-40<0
\end{aligned}
$$

Discriminant is negative, this means that quadratic equation does not have any solution or, in other words, parabola has no intercepts with horizontal axis $-x$. Since " a " $=-1$ is negative, the whole parabola lies below the horizontal axis x. So for all values of $x,-x^{2}-4 x-10<0$. There are infinitely many solutions to this quadratic inequality: $x \in R$.
(c) $\frac{2}{x-5}>0$

This fraction will be positive only if $x-5$ is positive; i.e $x>5$. Solution is $x \in(5, \infty)$.
(d) $\frac{2 x}{x-10} \leq 0$
(i) $2 x \leq 0$ and $x-10>0$
$x \leq 0$ and $x>10 \Rightarrow$ no solution
(ii) $2 x \geq 0$ and $x-10<0$
$x \geq 0$ and $x<10 \Rightarrow x \in[0,10)$

Solution to this rational inequality is $x \in[0,10)$. Note: numerator can be 0 , but denominator can never be zero - that is why the inequality is strict in the second condition in both (i) and (ii).
2. Solve the following equations and inequalities with absolute value:
(a) $|x-4|=2$
$x-4= \pm 2 \quad \Rightarrow \quad x=2,6$
(b) $|2 x-2|+|x+3|=4$
(i) $x \in(-\infty,-3]$ both $2 \mathrm{x}-2$ and $\mathrm{x}+3$ are negative
(ii) $x \in[-3,1] \quad 2 \mathrm{x}-2$ negative, $\mathrm{x}+3$ positive
(iii) $x \in[1, \infty)$ both $2 \mathrm{x}-2$ and $\mathrm{x}+3$ are positive
(i) $x \in(-\infty,-3]: \quad-(2 x-2)-(x+3)=4 \quad \Rightarrow \quad x=-\frac{5}{3} \notin(-\infty,-3] \Rightarrow$
\Rightarrow not a solution
(ii) $x \in[-3,1]: \quad-(2 x-2)+(x+3)=4 \quad \Rightarrow \quad x=1 \in[-3,1] \quad \Rightarrow$
\Rightarrow solution
(iii) $x \in[1, \infty): \quad(2 x-2)+(x+3)=4 \quad \Rightarrow \quad x=1 \in[1, \infty) \Rightarrow$
\Rightarrow solution
There is one solution to this equation with absolute value: $x=1$
(c) $|x-3|<1$
$-1<x-3<1 \Rightarrow 2<x<4 \quad \Rightarrow \quad x \in(2,4)$
(d) $|x+2| \geq 1$
$-1 \geq x+2 \geq 1 \Rightarrow-3 \geq x \geq-1 \quad x \in(-\infty,-3] \cup[-1, \infty)$

Solution:

4. Solve the following exponential and logarithmic equations:
(a) $7^{3 x+1}=49^{x}$
(b) $2^{x^{2}-7 x+10}=2^{2 x-10}$
(c) $\log _{2} 1=\log _{2} 3 x-4$

Solution:

$$
\text { (a) } \begin{array}{ll}
7^{3 x+1}=49^{x} \\
& 7^{3 x+1}=7^{2 x} \\
& 3 x+1=2 x \\
& x=-1
\end{array}
$$

(b) $2^{x^{2}-7 x+10}=2^{2 x-10}$

$$
\begin{aligned}
& x^{2}-7 x+10=2 x-10 \\
& x^{2}-9 x+20=0 \\
& D=b^{2}-4 a c=81-80=1
\end{aligned}
$$

$$
x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{9 \pm 1}{2}=4,5
$$

(c) $\quad \log _{2} 1=\log _{2} 3 x-4$
$0=\log _{2} 3 x-4$
$4=\log _{2} 3 x$
$2^{4}=3 x$
$x=\frac{16}{3}$

