OVS452 Intermediate Economics II VSE NF, Spring 2008 Lecture Notes #4 Eva Hromádková

5 Money and inflation

5.1 Motivation

Main focus: inflation = the percentage change in overall level of $prices^1$

- mechanism: inflation level of prices rate of exchange of money for G & S
- ass.: prices are fully flexible (long run)

Overview:

- 1. Money: definition + typology, demand & supply side
- 2. Inflation mechanism: money supply -> prices -> inflation
- 3. Determinants and channels of inflation nominal interest rate
- 4. Costs of inflation expected and unexpected
- 5. Hyperinflation

5.2 Money - what is it, how is the amount determined ?

Wide definition = stock of assets that can be readily used for transactions (value + liquidity + exchange)

5.2.1 Functions of money:

- 1. store of value: in time, imperfect (inflation)
- 2. unit of account: terms in which prices are quoted measurement of value)
- 3. medium of exchange: acceptable for purchase
 - liquidity how fast you can convert money to G & S
 - barter \Leftrightarrow double coincidence of needs

¹For an overview of rates of inflation over the world, see linked map.

5.2.2 Types of money:

- Historical evolution: barter -> commodity money -> fiat money
- commodity money: has intrinsic value (valuable on its own)
 - goods that are highly durable, accessible in limited amount (not few, not too much), small and easy to transport, widely valued and accepted
 - gold, silver, salt (African tribes, 15^{th} century)
 - funny examples: cigarettes (POW camps), stones fei (island Yap)
- fiat money: with no intrinsic value matter of general acceptance as means of payment
 - first fiat money probably China

5.2.3 Money supply = amount of money

- commodity money quantity of given commodity, fiat money # of printed banknotes, coins + other liquid assets
- Agent of government = **central bank** (in Czech republic = CNB)
- direct + indirect tools to regulate

Measure = Monetary aggregates (Czech National Bank data, by 31.1.2009):

	Definition	Amount (CZK millions)
С	currency in circulation	362 815.6
M1	${ m C}+{ m overnight}{ m deposits}$	$1\ 665\ 559.1$
M2	${ m M1}+{ m deposits}$ with maturity <2 years	
	+ deposits redeemable up to 3 months	$2\ 645\ 565.6$
M3	M2 + repurchase agreements + money market	
	fund shares $+$ debt securities (up to 2 years)	$2\ 713\ 673.8$

- $\bullet~{\rm C}$ and M1 store of value + medium of exchange
- M2 and M3 only store of value

Role of banks in determination of money supply:

- Banks use deposits made by customers to make loans (mortgages, etc.)
- **Reserves**: deposits that banks have received but did not lend out, goal = availability in case when depositors want to make withdrawal

• Example: let us assume reserve-deposit ratio (rr) = 20%

Assets		Liabilities	
Reserves	200	Deposits	$1\ 000$
Loans	800		

- Borrower can post it in another bank => resources for further loans
- Banks can "create money" = create assets (loans) that are part of money supply => M = 1000 + 800
- Total money supply $= \frac{1}{rr} \times \text{initial}M$

MODEL:

- reserve-deposit ratio (rr) determined by banks + regulating laws (min. level)
- currency-deposit ratio (cr) HH's preferences over their money holdings

$$B(\text{monetary base}) = C(\text{currency}) + R(\text{reserves})$$

$$M(\text{money supply}) = C(\text{currency}) + D(\text{deposits})$$

$$\frac{M}{B} = \frac{C+D}{C+R} = \frac{\frac{C}{D}+1}{\frac{C}{D}+\frac{R}{D}} = \frac{1+cr}{cr+rr}$$

$$M = \frac{1+cr}{cr+rr} \times B$$

• $\nearrow B => \searrow M; \quad \nearrow rr => \searrow M; \quad \nearrow cr => \searrow M$

Instruments of monetary policy: indirect

• open-market conditions: purchases & sales of government bonds

- buys bonds => increase in M; sells bonds => decrease in M

- reserve requirements: minimum reserve-deposit ratio
 - affects creation of new money through banks
- discount rate: charged on loans by CB for banks in case they have too low reserves to meet reserve requirements

5.3 Quantity theory of money

Quantity equation: identity relating amount of money in the economy with the number of transactions / income

$$M \times V = P \times T$$

where M - money supply, V - transaction velocity of money, P - price level, T - # of transactions

$$M \times V = P \times Y$$

where M - money supply, V - income velocity of money, P - price level, Y - real GDP

Money demand function:

• M - nominal value of money, $\frac{M}{P}$ - real money balances = how much can one buy

$$\left(\frac{M}{P}\right)^D = kY$$

• we can rewrite it to the form of quantity equation

$$\frac{M}{P} = kY \quad \rightarrow \quad \frac{M}{k} = PY \quad \rightarrow \quad V = \frac{1}{k}$$

- $\bullet \nearrow k \quad \rightarrow \searrow V \text{ (k is small => holdings of money are small => velocity is high)}$
- assumption: velocity V is constant $=> \mathbf{M}\mathbf{\bar{V}} = \mathbf{P}\mathbf{Y}$
- How is price level determined: V is constant and Y is determined by real variables => changes in P depends on changes in M primarly

$$\pi = \frac{\Delta P}{P} = \frac{\delta M}{M} - \frac{\delta Y}{Y}$$

5.4 Inflation and interest rates

Two types of interest rates:

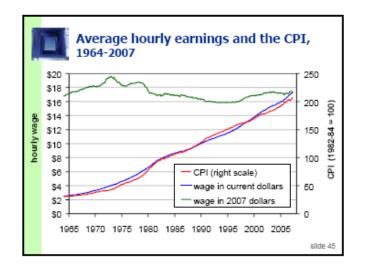
- **nominal** interest rate *i*: what bank pays, not adjusted for inflation
- real interest rate r: adjusted for inflation, real return to investment

Relationship = Fisher equation

 $i = r + \pi$

• as r is determined on market for loanable funds (I = S), then nominal int. rate accommodates for inflation => increase in π equals increase in i = Fisher effect

Role of expectations - two real interest rates:


- ex ante real interest rate = $i \pi^e$, where π^e is inflation rate expected at the time when people buy bond/take out loan
- ex post real interest rate = $i \pi$, where π is inflation rate realized at the time of selling the bond/repayment of loan

How this translates into money demand?

- nominal interest rate = opportunity cost of holding money => $\left(\frac{M}{P}\right)^D = L(Y, i)$
- relevant is expected inflation rate $\pi^e => \left(\frac{M}{P}\right)^D = L(Y, r + \pi^e)$
- price level does not only depend on current money supply BUT also on money supply expected in the future (through π^e)

5.5 Costs of inflation

- Common opinion: Inflation reduces real wages !
- BUT In the long run, real wage is determined by labor supply and labor demand, that is derived from marg. product of labor (not by price or inflation rate)

- change in price level = change in units of measurement
- Why, then, is inflation such a social problem?

5.5.1 Costs of expected inflation

1. shoeleather costs

- costs related to reducing money balances held, to avoid the inflation tax
- $\nearrow \pi \implies 1 \implies M = M$ (opportunity costs of holding money are high)
- same monthly spending + lower average money holding = more frequent trips to bank (time, fixed fees, etc.)

2. menu costs

• costs of changing prices for firms - new menus, new catalogues, repricing

3. variation in relative prices

- firms change their prices at different times => relative price distortions
- microeconomic inefficiencies in allocation of resources

4. unfair tax treatment

• some taxes are not adjusted for inflation - e.g. capital gains tax

5. general inconvenience

• hard to compare nominal values from different time periods => hard to do financial planning

5.5.2 Costs of unexpected inflation

- 1. Arbitrary redistribution of wealth: when contracts are based on expected inflation π^e and π turns out different, e.g. debts (debtor vs. lenders:
 - if $\pi > \pi^e = >$ debtor is better off than lender (lender gets lower real interest rate)
 - if $\pi < \pi^e =>$ debtor is worse off than lender (debtor has to pay higher interest rate
- 2. Higher uncertainty due to risk aversion, people are worse off

5.5.3 Benefits :-) of inflation

- positive effect on labor market as nominal wages are rarely cut, without inflation real wages would be above the equilibrium level implied by lower demand
- "taxation" of underground economy

5.6 Hyperinflation

Definition: if $\pi > 50\%$ in a month (i.e. 100x increase in prices over a year)

- money loses function of a store of value => affects other functions (mainly as medium of exchange)
- all costs become huuuuuuge
- return back to barter, commodity money or use of foreign currency

Highest monthly inflation rates in history:

Country	Month of	highest π	daily π	time needed for
	highest π	(monthly)		prices to double
Hungary	July 1946	$1.30 \times 10^{16} \%$	$195 \ \%$	15.6 hours
Zimbabwe	Nov 2008	$79\ 600\ 000\ 000\ \%$	98~%	24.7 hours
Yugoslavia	Jan 1994	313 000 000 %	64.6~%	1.4 days
Germany	Oct 1923	29500%	20.9~%	3.7 days
Greece	Nov 1994	$11 \; 300 \; \%$	17.1~%	4.5 days
China	May 1949	4 210 %	13.4~%	5.6 days

Cause: excessive money printing by government

- government needs to cover its expenditures (**seignorage**), and it cannot raise taxes or get the financing by issuing bonds (bad credit risk)
- **self-enforcing:** more money is printed => lower value of tax revenue => need for further printing

End: strict and painful fiscal reform - both expenditure and revenue (taxes) side

5.7 Classical Dichotomy

- real variables = variables measured in physical units (e.g. real GDP, real wage)
- **nominal variables** = variables expressed in terms of money (e.g. nominal wage, nominal interest rate)

Classical dichotomy: theoretical separation of real and nominal variables in the classical model, which implies that nominal variables do not affect real variables

Neutrality of money: changes in the money supply do not affect real variables

• both approximately true in the long run