Labor Demand

Labor Economics: Outline

- Labor Supply
- Labor Demand
- Equilibrium in Labor Market
- et cetera

Labor Demand Model: Firms

Firm's role in:

- Labor Market
, "consumes" labor
- Capital Market
- "consumes" capital
- Product (output) Market
- supplies its output

Labor Demand Model: Firms

Markets are competitive:

- firms are "price takers".

Competitive Markets Assumptions:

- Firms can hire at a constant wage rate w
- unlimited labor hours (L)
- Firms can rent at a constant rental rate r
b unlimited amounts of capital (K)
- Firms can sell at a constant price p
b unlimited amounts of a single good (q).

Production Function

Function:

$$
q=f(L, K)
$$

More output with more inputs:

$$
M P_{L}=\frac{\partial f(L, K)}{\partial L}>0
$$

Marginal Product of Labor $\left(M P_{L}\right)$ is the change in output resulting from hiring an additional worker, holding constant the quantities of all other inputs.

Marginal Product and Average Product

- Average Product of Labor $\left(A P_{L}\right)$ is the amount of output produced by the typical worker.

$$
A P_{L}=q / L
$$

- Marginal Product of Capital $\left(M P_{K}\right)$ is the change in output resulting from one-unit increase in the capital stock, holding constant the quantities of all other inputs.

$$
M P_{K}=\frac{\partial f(L, K)}{\partial K}>0
$$

Marginal Product and Average Product

TABLE 3-1 Calculating the Marginal and Average Product of Labor (Holding Capital Constant)

Number of Workers Employed	Output (Units)	Marginal Product (Units)	Average Product (Units)	Value of Marginal Product (\$)	Value of Average Product (\$)
0	0	-	-	-	-
1	11	11	11.0	22	22.0
2	27	16	13.5	32	27.0
3	47	20	15.7	40	31.3
4	66	19	16.5	38	33.0
5	83	17	16.6	34	33.2
6	98	15	16.3	30	32.7
7	111	13	15.9	26	31.7
8	122	11	15.3	22	30.5
9	131	9	14.6	18	29.1
10	138	7	13.8	14	27.6

Note: The calculations for the value of marginal product and the value of average product assume that the price of the output is $\$ 2$.

Graphical Interpretation

FIGURE 3-1 The Total Product, the Marginal Product, and the Average Product Curves

(a) The total product curve gives the relationship between output and the number of workers hired by the firm (holding capital fixed). (b) The marginal product curve gives the output produced by each additional worker, and the average product curve gives the output per worker.

SR: How many workers should the firm hire?

FIGURE 3-2 The Firm's Hiring Decision in the Short Run

A profit-maximizing firm hires workers up to the point where the wage rate equals the value of marginal product of labor. If the wage is $\$ 22$, the firm hires eight workers.

The Employment Decision

- Firm's problem:

$$
\max _{L} p f(L, \bar{K})-w L-r \bar{K}
$$

- Solution:

1. Partial derivative with respect to L

$$
p \frac{\partial f(L, K)}{\partial L}=w
$$

Problem

Suppose the praduction function is given by

$$
F(L)=6 L^{2 / 3}
$$

How many units of labor will the firm hire, if the cost per unit of labor is I2 and the price of output is G ?

Firm's problem

- Hire labor so that
- the value of marginal product is equal to the wage.
- ... and how much capital to rent?

The Employment Decision in the LR

Isoquants:

Similar to ICs (MRS): the slope of the isoquant at any given point is the marginal rate of technical substitution

MRTS $=\frac{\Delta K}{\Delta L}=-\frac{M P_{L}}{M P_{K}}$

Isocosts

Isocost line: equally costly combinations of L and K.

$$
C=w L+r K
$$

$C_{1}>C_{0}$
Slope of isocost:

$$
K=\frac{C}{r}-\frac{w}{r} L
$$

Cost Minimization: graph

Cost Minimization

$$
\min _{L, K} w L+r K \text { s.t. } f(L, K)=q
$$

Solution:
the slope of isoquant $=$ the slope of isocost

$$
\frac{w}{r}=\frac{M P_{L}}{M P_{K}}
$$

Profit Maximization

$$
\pi=p q-w L-r K
$$

Firms CHOOSE L and K to $\max \pi$, but NOT CHOOSE prices (w and r) and output (q).

$$
\max _{L K} p q-w L-r K \text { s.t. } q=f(L, K)
$$

L, K

$$
\max _{L, K} p f(L, K)-w L-r K
$$

The Employment Decision

$$
\max _{L, K} \operatorname{pf}(L, K)-w L-r K
$$

- Deriving first order conditions:

1. Partial derivative with respect to L

$$
p \frac{\partial f(L, K)}{\partial L}=w
$$

2. Partial derivative with respect to K

$$
p \frac{\partial f(L, K)}{\partial K}=r
$$

3. Solve two equations for two unknowns:

$$
L^{*}(w, r, p), K^{*}(w, r, p) \Rightarrow q^{*}=f\left(L^{*}(w, r, p), K^{*}(w, r, p)\right)
$$

Changes in cost of inputs: $w \downarrow$

Changes in cost of inputs: $w \downarrow$

- Two simultaneous changes
- in capital labor ratio
- production size
(b) Firm's Hiring Decision

Substitution and Scale Effects

FIGURE 3-12 Substitution and Scale Effects

A wage cut generates substitution and scale effects. The scale effect (the move from point P to point Q) encourages the firm to expand, increasing the firm's employment. The substitution effect (from Q to R) encourages the firm to use a more labor-intensive method of production, further increasing employment.

Elasticity of Substitution

The elasticity of substitution indicates how easily firms can change their input mix as relative input prices change.

$$
\sigma=\frac{\% \Delta(K / L)}{\% \Delta(w / r)} \text { or } \sigma=\frac{\partial(K / L)}{\partial(w / r)} \cdot \frac{w / r}{K / L}
$$

Note: for profit maximization $w / r=M R T S ~ \Rightarrow$

$$
\sigma=\frac{\% \Delta(K / L)}{\% \Delta(M R T S)} \text { or } \sigma=\frac{\partial(K / L)}{\partial(M R T S)} \cdot \frac{M R T S}{K / L}
$$

$\sigma \geq 0$: higher values of σ indicate that the firm can more easily substitute inputs as the relative input prices change.

Elasticity of Substitution

- σ is determined by the production function!

(a) Perfect Substitutes

(b) Perfect Complements

Elasticity of Labor Demand

The elasticity of demand is defined as the percentage change in quantity resulting from a percentage change in price.

$$
\varepsilon=\frac{\% \Delta L^{*}(w, r, p)}{\% \Delta w} \text { or } \varepsilon=\frac{\partial L^{*}(w, r, p)}{\partial w} \cdot \frac{w}{L^{*}}
$$

- It is a measure of how responsive employment is to a change in the wage.

Elasticity of Labor Demand

- $\varepsilon=0$ perfectly inelastic demand;
- $-1<\varepsilon<0$ inelastic demand;
- $\varepsilon=-1$ unit elastic labor demand;
- $\varepsilon<-1$ elastic labor demand;
- $\varepsilon=-\infty$ perfectly elastic demand.

Elasticity of Labor Demand

Employment

- Perfectly inelastic demand:

$$
\partial L / \partial w \cdot w / L=0
$$

- Same employment is demanded at any wage.
- Perfectly elastic demand:

$$
\partial L / \partial w \cdot w / L=-\infty
$$

No labor is demanded above market wage.

Elasticity of Labor Demand

- Inelastic demand

$-1<\partial L / \partial w \cdot w / L<0$
- \% Δ in $\mathrm{L}<\% \Delta$ in w.

Elastic demand

$$
\partial L / \partial w \cdot w / L<-1
$$

- \% Δ in $L>\% \Delta$ in w.

Unit Elastic demand $\partial L / \partial w \cdot w / L=-1$

- \% Δ in $\mathrm{L}=\% \Delta$ in w.

Policy Application: Minimum wage

FIGURE 3-19 The Impact of the Minimum Wage on Employment

A minimum wage set at \bar{w} forces employees to cut employment (from E^{*} to \bar{E}). The higher wage also encourages $\left(E_{\mathrm{S}}-E^{*}\right)$ additional workers to enter the market. The minimum wage, therefore, creates unemployment.

Policy Application: Minimum wage

- If the labor demand elasticity with respect to wages is low, the employment effects of min wages are low.

Extreme cases:

- If labor demand is perfectly inelastic?
- If labor demand is perfectly elastic?

Reality? somewhere between extreme cases

