Labor Demand

Labor Economics VSE Praha March 2009

Labor Economics: Outline

- Labor Supply
- Labor Demand
- Equilibrium in Labor Market
- et cetera

Labor Demand Model: Firms

Firm's role in:

- Labor Market
 - "consumes" labor
- Capital Market
 - "consumes" capital
- Product (output) Market
 - supplies its output

Labor Demand Model: Firms

Markets are competitive:

firms are "price takers".

Competitive Markets Assumptions:

- \blacktriangleright Firms can hire at a constant wage rate w
 - unlimited labor hours (L)
- Firms can rent at a constant rental rate r
 - unlimited amounts of capital (K)
- \blacktriangleright Firms can sell at a constant price p
 - unlimited amounts of a single good (q).

Production Function

Function:

$$q=f(L, K)$$

More output with more inputs:

$$MP_{L} = \frac{\partial f(L, K)}{\partial L} > 0$$

Marginal Product of Labor (MP_L) is the change in output resulting from hiring an additional worker, holding constant the quantities of all other inputs.

• Average Product of Labor (AP_L) is the amount of output produced by the typical worker.

 $AP_L = q/L$

• Marginal Product of Capital (MP_K) is the change in output resulting from one-unit increase in the capital stock, holding constant the quantities of all other inputs.

$$MP_{K} = \frac{\partial f(L, K)}{\partial K} > 0$$

Marginal Product and Average Product

TABLE 3-1 Calculating the Marginal and Average Product of Labor (Holding Capital Constant)

Number of Workers Employed	Output (Units)	Marginal Product (Units)	Average Product (Units)	Value of Marginal Product (\$)	Value of Average Product (\$)
0	0	_	—	_	_
1	11	11	11.0	22	22.0
2	27	16	13.5	32	27.0
3	47	20	15.7	40	31.3
4	66	19	16.5	38	33.0
5	83	17	16.6	34	33.2
6	98	15	16.3	30	32.7
7	111	13	15.9	26	31.7
8	122	11	15.3	22	30.5
9	131	9	14.6	18	29.1
10	138	7	13.8	14	27.6

Note: The calculations for the value of marginal product and the value of average product assume that the price of the output is \$2.

D

Graphical Interpretation

FIGURE 3-1 The Total Product, the Marginal Product, and the Average Product Curves

(*a*) The total product curve gives the relationship between output and the number of workers hired by the firm (holding capital fixed). (*b*) The marginal product curve gives the output produced by each additional worker, and the average product curve gives the output per worker.

(a)

(b)

SR: How many workers should the firm hire?

FIGURE 3-2 The Firm's Hiring Decision in the Short Run

A profit-maximizing firm hires workers up to the point where the wage rate equals the value of marginal product of labor. If the wage is \$22, the firm hires eight workers.

The Employment Decision

• Firm's problem:

$$\max_{L} pf(L,\overline{K}) - wL - r\overline{K}$$

- Solution:
- I. Partial derivative with respect to L

$$p\frac{\partial f(L,K)}{\partial L} = w$$

Suppose the production function is given by

$$F(L) = 6L^{2/3}$$

How many units of labor will the firm hire, if the cost per unit of labor is 12 and the price of output is 6?

Firm's problem

- Hire labor so that
- the value of marginal product is equal to the wage.
- ... and how much capital to rent?

The Employment Decision in the LR

Isoquants:

Capital Similar to ICs (MRS): the slope of the isoquant at any given point is the marginal rate of technical substitution ΔK γ q_1 $MRTS = \frac{\Delta K}{\Delta L} = -\frac{MP_L}{MP_{\nu}}$ q_0 ΔE

Employment

Isocosts

Isocost line: equally costly combinations of L and K.

Cost Minimization

$\min_{L,K} wL + rK \text{ s.t. } f(L,K) = q$

Solution:

the slope of isoquant = the slope of isocost

$$\frac{w}{r} = \frac{MP_L}{MP_K}$$

Profit Maximization

$$\pi = pq - wL - rK$$

Firms CHOOSE L and K to $max \pi$, but NOT CHOOSE prices (w and r) and output (q).

$$\max_{L,K} pq - wL - rK \quad \text{s.t.} \quad q = f(L,K)$$

$$\max_{L,K} pf(L,K) - wL - rK$$

The Employment Decision

 $\max_{L,K} pf(L,K) - wL - rK$

- Deriving first order conditions:
- I. Partial derivative with respect to L

$$p\frac{\partial f(L,K)}{\partial L} = w$$

2. Partial derivative with respect to K

$$p \frac{\partial f(L,K)}{\partial K} = r$$

3. Solve two equations for two unknowns: $L^*(w,r,p), K^*(w,r,p) \Rightarrow q^* = f(L^*(w,r,p), K^*(w,r,p))$

Changes in cost of inputs: $w \downarrow$

D

Changes in cost of inputs: $w \downarrow$

- Two simultaneous changes
 - in capital labor ratio
 - production size

Substitution and Scale Effects

FIGURE 3-12 Substitution and Scale Effects

A wage cut generates substitution and scale effects. The scale effect (the move from point P to point Q) encourages the firm to expand, increasing the firm's employment. The substitution effect (from Q to R) encourages the firm to use a more labor-intensive method of production, further increasing employment.

D

Elasticity of Substitution

The elasticity of substitution indicates how easily firms can change their input mix as relative input prices change.

$$\sigma = \frac{\%\Delta(K/L)}{\%\Delta(w/r)} \text{ or } \sigma = \frac{\partial(K/L)}{\partial(w/r)} \cdot \frac{w/r}{K/L}$$

Note: for profit maximization w/r=MRTS \Rightarrow

$$\sigma = \frac{\%\Delta(K/L)}{\%\Delta(MRTS)} \text{ or } \sigma = \frac{\partial(K/L)}{\partial(MRTS)} \cdot \frac{MRTS}{K/L}$$

 $\sigma \ge 0$: higher values of σ indicate that the firm can more easily substitute inputs as the relative input prices change.

D

The elasticity of demand is defined as the percentage change in quantity resulting from a percentage change in price.

$$\varepsilon = \frac{\% \Delta L^*(w, r, p)}{\% \Delta w} \text{ or } \varepsilon = \frac{\partial L^*(w, r, p)}{\partial w} \cdot \frac{w}{L^*}$$

It is a measure of how responsive employment is to a change in the wage.

- $\varepsilon = 0$ perfectly inelastic demand;
- I − 1 < ε < 0 inelastic demand;</p>
- $\varepsilon = -1$ unit elastic labor demand;
- $\varepsilon < -1$ elastic labor demand;
- $\varepsilon = -\infty$ perfectly elastic demand.

- Perfectly inelastic demand: $\partial L/\partial w \cdot w/L=0$
- Same employment is demanded at any wage.
- Perfectly elastic demand: $\partial L / \partial w \cdot w / L = -\infty$
- No labor is demanded above market wage.

D

Inelastic demand

 $-1 < \partial L / \partial w \cdot w / L < 0$

 $\land \ \% \ \Delta \ in \ L < \% \ \Delta \ in \ w.$

• Elastic demand $\partial L/\partial w \cdot w/L < -1$

$$\land$$
 % Δ in L > % Δ in w.

- Unit Elastic demand $\partial L/\partial w \cdot w/L=-1$
- $\land \ \% \ \Delta \ in \ L = \% \ \Delta \ in \ w.$

Policy Application: Minimum wage

FIGURE 3-19 The Impact of the Minimum Wage on Employment

A minimum wage set at \overline{w} forces employees to cut employment (from E^* to \overline{E}). The higher wage also encourages ($E_S - E^*$) additional workers to enter the market. The minimum wage, therefore, creates unemployment.

Dollars

Policy Application: Minimum wage

If the labor demand elasticity with respect to wages is low, the employment effects of min wages are low.

Extreme cases:

- If labor demand is perfectly inelastic?
- If labor demand is perfectly elastic?

Reality? somewhere between extreme cases