Intermediate Microeconomics

Lecture 3: Demand and elasticities

Agribusiness Teaching Center Easter Term 2015

Consumer Optimisation Problem Calculus Approach

Problem

 $\max_{x_1,x_2} U(x_1,x_2),$

s.t. $p_1 x_1 + p_2 x_2 = m$

Problem (Lagrange function)

$$\max_{x_1,x_2,\lambda} \mathcal{L} = U(x_1,x_2) + \lambda (m - p_1 x_1 - p_2 x_2)$$

Consumer Optimisation Problem Calculus Approach

Problem

$$\max_{x_1,x_2,\lambda} \mathcal{L} = U(x_1,x_2) + \lambda (m - p_1 x_1 - p_2 x_2)$$

Solution

First order conditions:

$$\frac{\partial \mathcal{L}}{\partial x_1} = 0: \frac{\partial U(x_1, x_2)}{\partial x_1} - \lambda p_1 = 0$$
(1)

$$\frac{\partial \mathcal{L}}{\partial x_2} = 0: \frac{\partial U(x_1, x_2)}{\partial x_2} - \lambda p_2 = 0$$
(2)

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0: m - p_1 x_1 - p_2 x_2 = 0$$
(3)

Demand Function

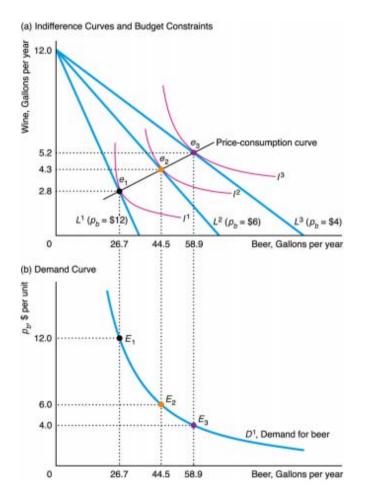
Definition

Demand: The quantity demanded at each possible price.

• Demand function:

$$x_1 = x_1 (p_1, \bar{p}_2, \bar{m})$$

- Comparative statics
 - Shifts in *m*.
 - Shifts in p1.
 - Shifts in p₂.

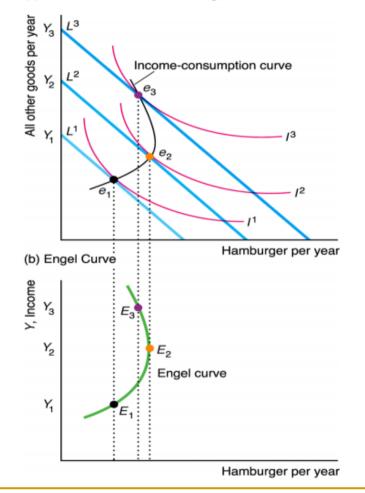


Income and Engel Curve

- Income expansion path
 - Bundles demanded at different income levels
 - Income-consumption curve
- Engel curve

$$x_1 = x_1 (\bar{p}_1, \bar{p}_2, m)$$

 Demand as a function of income only! (a) Indifference Curves and Budget Constraints



Engel Curve and Income Elasticity

Definition

The income elasticity of demand (or income elasticity) is the precentage change in the quantity demanded in response to a given percentage change in income.

$$\varepsilon_{M} = \frac{\% \Delta x_{1}}{\% \Delta m}$$

$$= \frac{\frac{\Delta x_{1}}{x_{1}}}{\frac{\Delta m}{m}} = \frac{\frac{x_{1}' - x_{1}}{x_{1}}}{\frac{m' - m}{m}}$$

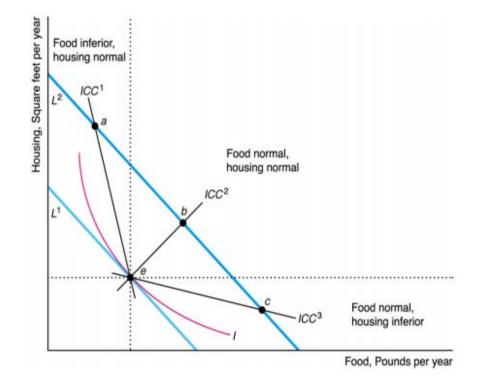
$$= \frac{\partial x_{1}}{\partial m} \cdot \frac{m}{x_{1}}$$

• Note:

$$\varepsilon_M \neq \frac{\Delta x_1}{\Delta m}$$

Engel Curve and Income Elasticity

- Normal good : $\varepsilon > 0$
- Inferior good: $\varepsilon < 0$
- Quasilinear: $\varepsilon = 0$
- Luxury goods: $\varepsilon > 1$
- Necessities: $\varepsilon < 1$
- Homothetic: $\varepsilon = 1$



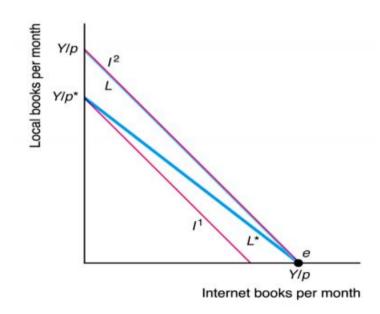
Indifference curves

Suppose Absurdistani people have 2 left feet and 1 right foot. We want to derive a utility function for a Absurdistani person who has L left shoes and R right shoes.

- 1. Draw the indifference curves.
- 2. Is it:
 - 1. rational
 - 2. monotonic
 - 3. CONVEX
 - 1. strictly convex
 - 2. weakly convex

Demand Function

 Derive demand function (graphically) for a good with perfect substitute available.



Homothetic goods

Assume Cobb-Douglas utility function

$$U = x^{\alpha} y^{\beta}$$

- Write the Lagrangian function for consumer's optimisation problem
- Derive the FOCs and the *demand function*
- Show that this is an example of *homothetic* preferences

Quasi-linear preferences

- Assume utility function of the following form $U(x, y) = x + \sqrt{y}$
- It would work with any function of the form $u(x_1, x_2) = x_1 + v(x_2)$
- Derive the demand functions and show that the demand for y does not depend on income

Income and Substitution Effects

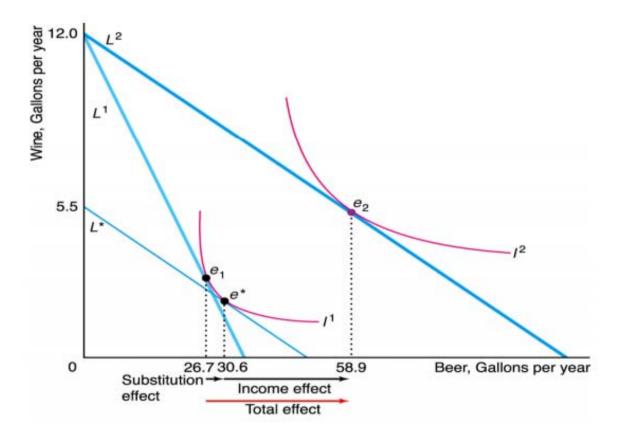
Definition

The change in demand due to the change in the rate of exchange between the two goods is called **substitution effect.** (changed own price, other prices and utility constant).

Definition

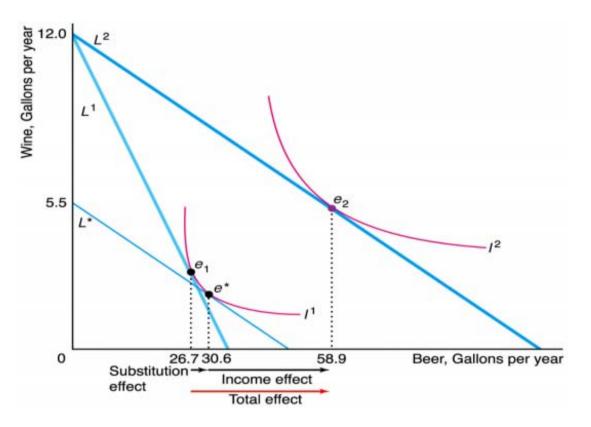
The change in demand due to the change in purchasing power is called **income effect.** (prices are hold constant)

Income and Substitution Effects



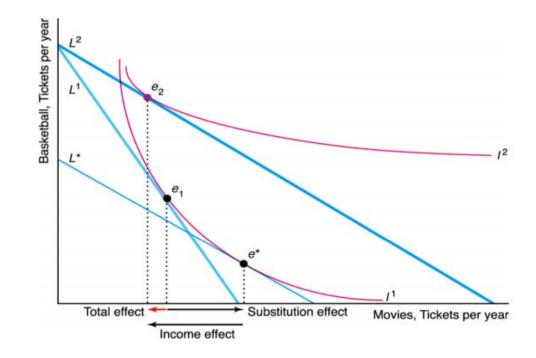
 Substitution effect is always negative due to the 'well-behaved' indifference curves!

Income and Substitution Effects



- Substitution effect is always negative due to the 'well-behaved' indifference curves!
- What about the direction of the income effect?

Income, Substitution Effects and Giffen Goods



Giffen goods (Inferior)

• What about perfect compliments?

Price and cross-price changes

- Own price change
 - Ordinary goods:

$$\frac{\partial x_1}{\partial p_1} < 0$$

• Giffen goods:

$$\frac{\partial x_1}{\partial p_1} > 0$$

- Cross price change
 - substitute (not perfect)

$$\frac{\partial x_1}{\partial p_2} > 0$$

complement (not perfect)

$$\frac{\partial x_1}{\partial p_2} < 0$$

Some problems (budget constraint)

Draw a budget line to illustrate each of the following:

- 1. $p_1 = 1, p_2 = 1, m = 10$
- 2. $p_1 = 2, p_2 = 1, m = 20$
- 3. $p_1 = 1, p_2 = 0, m = 10$
- 4. $p_1 = p_2, m = 15p_1$

Exercise

Milan's utility function is $U(X, Y) = X \cdot Y$

- 1. Suppose he originally consumed 4 units of X and 12 units of Y. If his consumption of Y is reduced to 8, how much X must he have to be as well as he was to begin with.
- 2. which bundle would Milan like better:
 - (a) 3 units of X and 10 units of Y, or
 - (b) 4 units of X and 8 units of Y.

Does an increase in the price of *Giffen good* make the consumers better off?