Intermediate Microeconomics

Lecture 2: Utility and Demand

Agribusiness Teaching Center
Easter Term 2015

Formal Microeconomics

- Consumer theory
- People \leftarrow N ow
- Households
- Applications
- Producer theory
- Internal organisation
- Industrial organisation
- Equilibrium
- Existence
- Efficiency

Consumer Theory

PECPECHCFTI EBEST IHNGSIHEY CANAFFOD

Consumer Theory

PECPE C-DESTHEnot pefercellandeTIEY CANAFORD

Consumer Theory

Neoclassical Theory of Consumption

The human or homo economicus

- The economic agent
- Rational
- Egoistic (self-interested)

Theorem of Debreu

Theorem

Given the assumptions of Rationality and Monotonicity, $\exists u(\bullet)$ s.t. $\left(x_{1}, x_{2}\right) \succ\left(y_{1}, y_{2}\right) \Longleftrightarrow u\left(x_{1}, x_{2}\right)>u\left(y_{1}, y_{2}\right)$.

Proof.

Do not need for this course.

Consumer Theory

conners Cor thenot pefieredbendeTIEY CANAFFCR

Consumer Theory

CoBUAFSA-DEEthenot peferedlandeTIEY CANAFFCRD

Affordable Bundles

Budget Constraint

(a) Price of Pizza Doubles

(b) Income Doubles

Consumer Theory

casures f-bef thenot peferrediandefrontheir corunptionst

Consumer's choice

(a) Interior Solution

Fact
Consumers' choice is a combo of their preferences and budget.

Consumer's choice

Consumer's choice

Consumer Optimisation Problem

Calculus Approach

```
Problem
\mp@subsup{m}{\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}}{}U(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{})\mathrm{ ,}
s.t. }\quad\mp@subsup{p}{1}{}\mp@subsup{x}{1}{}+\mp@subsup{p}{2}{}\mp@subsup{x}{2}{}=
```


Problem (Lagrange function)

$$
\max _{x_{1}, x_{2}, \lambda} \mathcal{L}=U\left(x_{1}, x_{2}\right)+\lambda\left(m-p_{1} x_{1}-p_{2} x_{2}\right)
$$

Consumer Optimisation Problem

Calculus Approach

Problem

$$
\max _{x_{1}, x_{2}, \lambda} \mathcal{L}=U\left(x_{1}, x_{2}\right)+\lambda\left(m-p_{1} x_{1}-p_{2} x_{2}\right)
$$

Solution

First order conditions:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=0: \frac{\partial U\left(x_{1}, x_{2}\right)}{\partial x_{1}}-\lambda p_{1}=0 \tag{1}\\
& \frac{\partial \mathcal{L}}{\partial x_{2}}=0: \frac{\partial U\left(x_{1}, x_{2}\right)}{\partial x_{2}}-\lambda p_{2}=0 \tag{2}\\
& \frac{\partial \mathcal{L}}{\partial \lambda}=0: m-p_{1} x_{1}-p_{2} x_{2}=0 \tag{3}
\end{align*}
$$

Consumer Optimisation Problem

Calculus Approach

Problem

Solution

From (1) and (2):

$$
\begin{equation*}
\left[\frac{M U_{x_{1}}}{M U_{x_{2}}}=\right] \frac{\frac{\partial U\left(x_{1}, x_{2}\right)}{\partial x_{1}}}{\frac{\partial U\left(x_{1}, x_{2}\right)}{\partial x_{2}}}=\frac{p_{1}}{p_{2}} \tag{4}
\end{equation*}
$$

Equations (3) and (4) give the solution: $x_{1}^{*}\left(p_{1}, p_{2}, m\right)$ and $x_{2}^{*}\left(p_{1}, p_{2}, m\right)$

Definition

The pair $\left(x_{1}^{*}, x_{2}^{*}\right)$ is the optimal choice of the consumer.

Definition

Demand function: $x=x\left(p_{1}, p_{2}, m\right)$

Consumer Optimisation Problem

Full derivative of the utility function $U\left(x_{1}, x_{2}\right)$:

$$
\begin{equation*}
d U=\frac{\partial U}{\partial x_{1}} \cdot d x_{1}+\frac{\partial U}{\partial x_{2}} \cdot d x_{2} \tag{5}
\end{equation*}
$$

Fact

The indifference curve is the utility function on a fixed level.

So (5) can be rewritten as:

$$
\begin{equation*}
\frac{\frac{\partial U\left(x_{1}, x_{2}\right)}{\partial x_{1}}}{\frac{\partial U\left(x_{1}, x_{2}\right)}{\partial x_{2}}}=-\frac{d x_{2}}{d x_{1}} \tag{6}
\end{equation*}
$$

Corollary

From (4) and (6) we have:

$$
\begin{equation*}
M R S=\frac{p_{1}}{p_{2}} \tag{7}
\end{equation*}
$$

Fact

The internal rate of change is equal to the external rate of change.

Consumer Optimisation Problem

Necessary Condition

$$
\begin{aligned}
M R S & =\frac{p_{1}}{p_{2}} \\
\text { internal } R C h & =\text { external } R C h
\end{aligned}
$$

$$
\text { slope IC }=\text { slope } B C
$$

$$
\text { benefit of consuming }=\text { opportunity cost of }
$$

$$
x_{1} \text { as opposed to } x_{2}=x_{1} \text { in terms of } x_{2}
$$

Demand Function

Definition

Demand:

The quantity demanded at each possible price.

- Demand function:

$$
x_{1}=x_{1}\left(p_{1}, \bar{p}_{2}, \bar{m}\right)
$$

Demand Function

Definition

Demand:
The quantity demanded at each possible price.

- Demand function:

$$
x_{1}=x_{1}\left(p_{1}, \bar{p}_{2}, \bar{m}\right)
$$

- Comparative statics
- Shifts in m.
- Shifts in p_{1}.
- Shifts in p_{2}.

Income and Engel Curve

(a) Indifference Curves and Budget Constraints

- Income expansion path
- Bundles demanded at different income levels
- Income-consumption curve
- Engel curve

$$
x_{1}=x_{1}\left(\bar{p}_{1}, \bar{p}_{2}, m\right)
$$

- Demand as a function of income only!

(b) Engel Curve

Engel Curve and Income Elasticity

Definition

The income elasticity of demand (or income elasticity) is the precentage change in the quantity demanded in response to a given percentage change in income.

$$
\begin{aligned}
\varepsilon_{M} & =\frac{\% \Delta x_{1}}{\% \Delta m} \\
& =\frac{\frac{\Delta x_{1}}{x_{1}}}{\frac{\Delta m}{m}}=\frac{\frac{x_{1}^{\prime}-x_{1}}{x_{1}}}{\frac{m^{\prime}-m}{m}} \\
& =\frac{\partial x_{1}}{\partial m} \cdot \frac{m}{x_{1}}
\end{aligned}
$$

- Note:

$$
\varepsilon_{M} \neq \frac{\Delta x_{1}}{\Delta m}
$$

Engel Curve and Income Elasticity

- Normal good : $\varepsilon>0$
- Inferior good: $\varepsilon<0$
- Quasilinear: $\varepsilon=0$

Engel Curve and Income Elasticity

- Normal good : $\varepsilon>0$
- Inferior good: $\varepsilon<0$
- Quasilinear: $\varepsilon=0$
- Luxury goods: $\varepsilon>1$
- Necessities: $\quad \varepsilon<1$
- Homothetic: $\varepsilon=1$

Indifference curves

Suppose A bsurdistani people have 2 left feet and 1 right foot. We want to derive a utility function for a Absurdistani person who has L left shoes and R right shoes.

1. Draw the indifference curves.
2. Is it:

1 rational
2 monotonic
3. convex

1. strictly convex
2. weakly convex
