Intermediate Microeconomics

Lecture 2: Utility and Demand

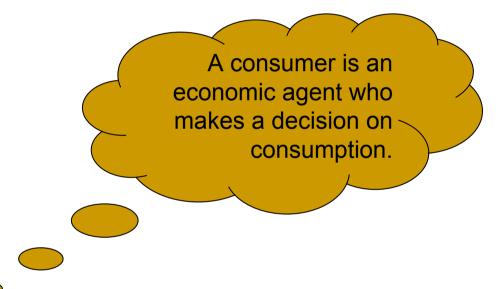
Agribusiness Teaching Center Easter Term 2015

Formal Microeconomics

- Consumer theory
 - People ← Now
 - Households
 - Applications
- Producer theory
 - Internal organisation
 - Industrial organisation
- Equilibrium
 - Existence
 - Efficiency

PEOPLE CHOOSE THE BEST THINGS THEY CAN AFFORD

PEOPLE CHOOSE THE most preferred bundle THEY CAN AFFORD



consumers CHOOSE THE most preferred bundle THEY CAN AFFORD

Neoclassical Theory of Consumption

The human or *homo economicus*

- The economic agent
 - Rational
 - Egoistic (self-interested)

Theorem of Debreu

Theorem

Given the assumptions of Rationality and Monotonicity,

$$\exists u (\bullet) \ s.t. \ (x_1, x_2) \succ (y_1, y_2) \iff u (x_1, x_2) > u (y_1, y_2).$$

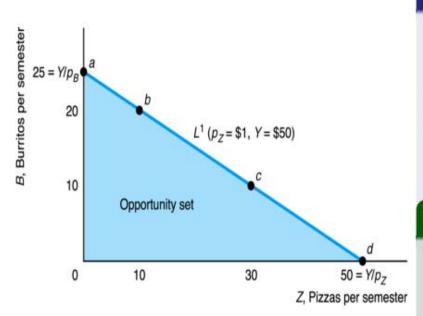
Proof.

Do not need for this course.

consumers <u>CHOOSE</u> the most preferred bundle THEY CAN AFFORD

consumers CHOOSE the most preferred bundle <u>THEY CAN AFFORD</u>

Affordable Bundles



Fact

The slope of $BC = -\frac{p_z}{p_B}$.

Definition

Budget constraint:

The bundles of goods that can be bought if the entire budget is spent on those goods at given prices.

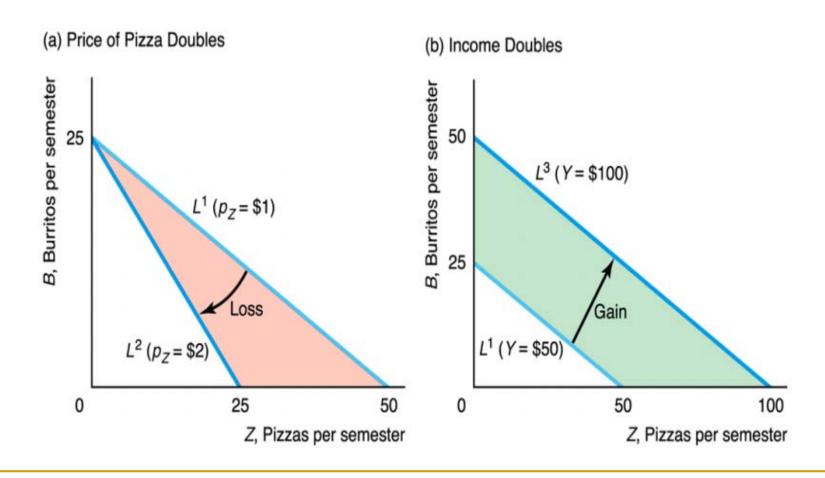
Example

Budget constraint:

$$p_1x_1 + p_2x_2 = m$$

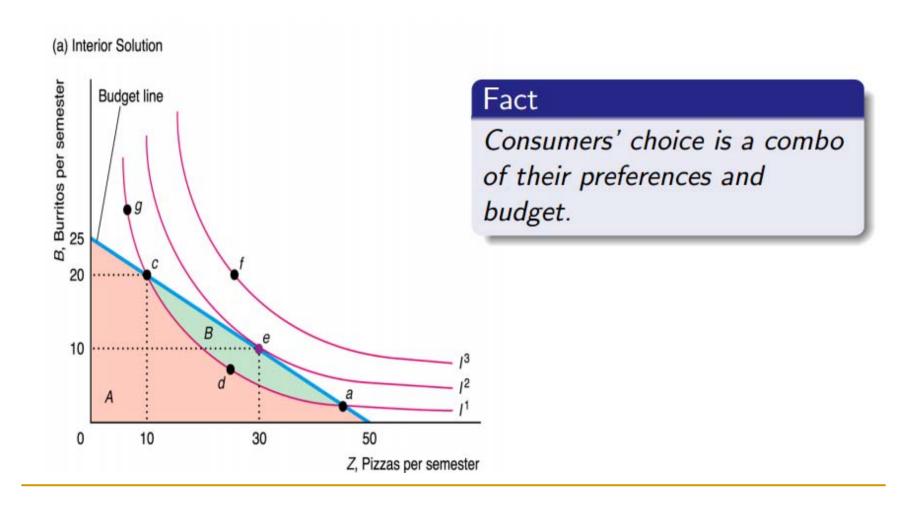
$$x_2 = \underbrace{\frac{m}{p_2}}_{intercept} \underbrace{-\frac{p_1}{p_2} \cdot x_1}_{slope}$$

Budget Constraint

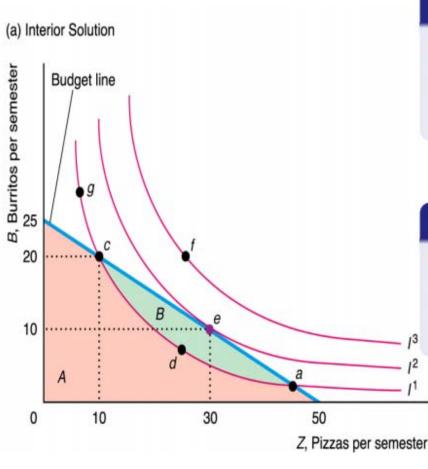


consumers <u>CHOOSE</u> the most preferred bundle from their consumption set

Consumer's choice



Consumer's choice



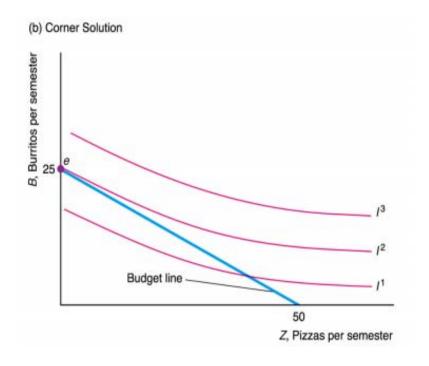
Fact

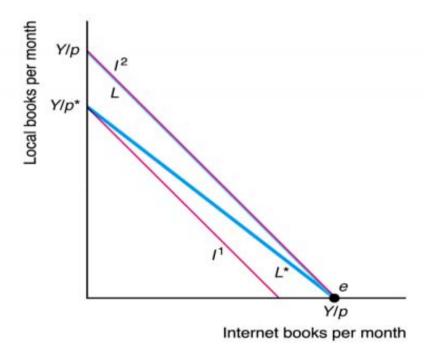
Consumers' choice is a combo of their preferences and budget.

Lemma

Consumer chooses the bundle where the indiference curve is tangent to the budget line.

Consumer's choice





Calculus Approach

Problem

$$\max_{x_1, x_2} U(x_1, x_2),$$
 $s.t.$ $p_1x_1 + p_2x_2 = m$

Problem (Lagrange function)

$$\max_{x_1,x_2,\lambda} \mathcal{L} = U(x_1,x_2) + \lambda (m - p_1 x_1 - p_2 x_2)$$

Calculus Approach

Problem

$$\max_{x_1, x_2, \lambda} \mathcal{L} = U(x_1, x_2) + \lambda (m - p_1 x_1 - p_2 x_2)$$

Solution

First order conditions:

$$\frac{\partial \mathcal{L}}{\partial x_1} = 0 : \frac{\partial U(x_1, x_2)}{\partial x_1} - \lambda p_1 = 0$$
 (1)

$$\frac{\partial \mathcal{L}}{\partial x_2} = 0 : \frac{\partial U(x_1, x_2)}{\partial x_2} - \lambda p_2 = 0$$
 (2)

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0: m - p_1 x_1 - p_2 x_2 = 0 \tag{3}$$

Calculus Approach

Problem

Solution

From (1) and (2):

$$\left[\frac{MU_{x_1}}{MU_{x_2}} = \right] \frac{\frac{\partial U(x_1, x_2)}{\partial x_1}}{\frac{\partial U(x_1, x_2)}{\partial x_2}} = \frac{p_1}{p_2}$$
(4)

Equations (3) and (4) give the solution: $x_1^*(p_1, p_2, m)$ and $x_2^*(p_1, p_2, m)$

Definition

The pair (x_1^*, x_2^*) is the optimal choice of the consumer.

Definition

Demand function: $x = x(p_1, p_2, m)$

Full derivative of the utility function $U(x_1, x_2)$:

$$dU = \frac{\partial U}{\partial x_1} \cdot dx_1 + \frac{\partial U}{\partial x_2} \cdot dx_2 \tag{5}$$

Fact

The indifference curve is the utility function on a fixed level.

So (5) can be rewritten as:

$$\frac{\frac{\partial U(x_1, x_2)}{\partial x_1}}{\frac{\partial U(x_1, x_2)}{\partial x_2}} = -\frac{dx_2}{dx_1} \qquad (6)$$

Corollary

From (4) and (6) we have:

$$MRS = \frac{p_1}{p_2} \tag{7}$$

Fact

The internal rate of change is equal to the external rate of change.

Necessary Condition

$$MRS = \frac{p_1}{p_2}$$
 $internal\ RCh = external\ RCh$
 $slope\ IC = slope\ BC$
 $benefit\ of\ consuming\ x_1\ as\ opposed\ to\ x_2 = \frac{opportunity\ cost\ of\ x_1\ in\ terms\ of\ x_2}$

Demand Function

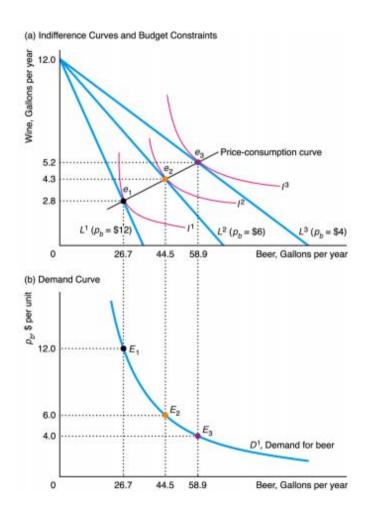
Definition

Demand:

The quantity demanded at each possible price.

Demand function:

$$x_1=x_1\left(p_1,\bar{p}_2,\bar{m}\right)$$



Demand Function

Definition

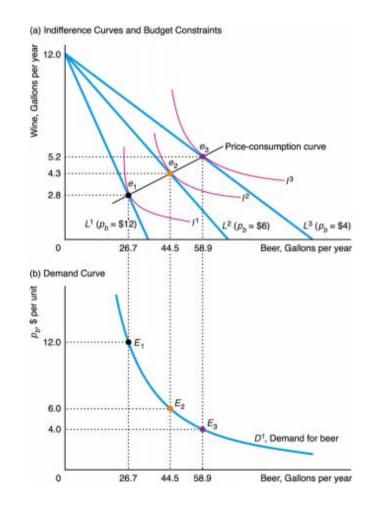
Demand:

The quantity demanded at each possible price.

Demand function:

$$x_1 = x_1 (p_1, \bar{p}_2, \bar{m})$$

- Comparative statics
 - Shifts in *m*.
 - Shifts in p_1 .
 - Shifts in p₂.

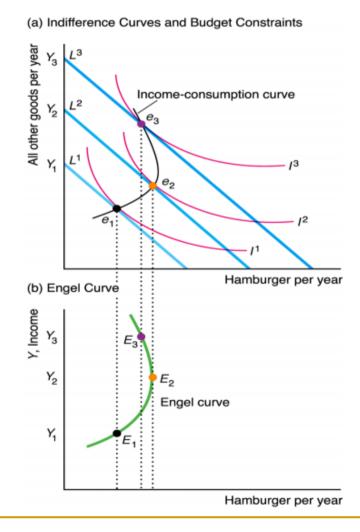


Income and Engel Curve

- Income expansion path
 - Bundles demanded at different income levels
 - Income-consumption curve
- Engel curve

$$x_1 = x_1 (\bar{p}_1, \bar{p}_2, m)$$

Demand as a function of income only!



Engel Curve and Income Elasticity

Definition

The income elasticity of demand (or income elasticity) is the precentage change in the quantity demanded in response to a given percentage change in income.

$$\varepsilon_{M} = \frac{\frac{\%\Delta x_{1}}{\%\Delta m}}{\frac{\Delta x_{1}}{x_{1}}} = \frac{\frac{x_{1}' - x_{1}}{x_{1}}}{\frac{m' - m}{m}}$$
$$= \frac{\partial x_{1}}{\partial m} \cdot \frac{m}{x_{1}}$$

Note:

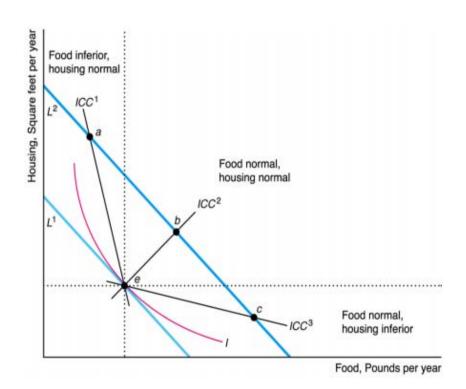
$$\varepsilon_M \neq \frac{\Delta x_1}{\Delta m}$$

Engel Curve and Income Elasticity

• Normal good : $\varepsilon > 0$

• Inferior good: $\varepsilon < 0$

• Quasilinear: $\varepsilon = 0$



Engel Curve and Income Elasticity

• Normal good : $\varepsilon > 0$

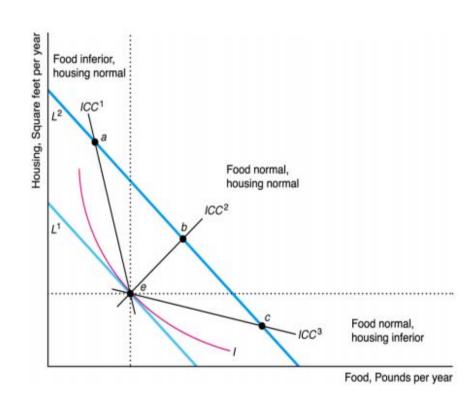
• Inferior good: $\varepsilon < 0$

• Quasilinear: $\varepsilon = 0$

• Luxury goods: $\varepsilon > 1$

• Necessities: $\varepsilon < 1$

• Homothetic: $\varepsilon = 1$



Indifference curves

Suppose Absurdistani people have 2 left feet and 1 right foot. We want to derive a utility function for a Absurdistani person who has L left shoes and R right shoes.

- Draw the indifference curves.
- 2. Is it:
 - 1. rational
 - 2. monotonic
 - 3. **CONVEX**
 - strictly convex
 - weakly convex