Production

Economics II: Microeconomics

VŠE Praha

November 2009

Aslanyan (VŠE Praha)

∃ >

Consumers:

- People.
- Households.
- Firms:
 - Internal Organisation.
 - Industrial Organisation.
- Equilibrium:
 - Holds.
 - Does not hold.

э

Equilibrium

Definition

A condition in which all acting influences are canceled by others, resulting in a stable, balanced, or unchanging system.

Definition (Economics)

A state of the economy in which for every good the excess demand is zero (total supply and demand are exactly equal).

Definition (Game theory)

A condition which no actor has an incentive to deviate from (given the payoffs and available strategies).

(日) (同) (三) (三)

Consumers:

- People.
- Households.
- Firms: 🔶 Now
 - Internal Organisation.
 - Industrial Organisation.
- Equilibrium:
 - Holds.
 - Does not hold.

э

- Translate Neoclassical Consumer Theory into Theory of Production
- Revise graphs from introductory Microeconomics
- Introduce a few new concepts

Definition

A **firm** is a unit that organises production of a good (or service) for sale in order to maximise its profit.

Definition

Technology is the sum total of society's pool of knowledge concerning the art of production.

- No Land of Cockaigne or No Free Lunch Zero inputs results in zero output.
- Free disposal or Monotonicity More inputs can produce at least as much output as less inputs.

Convexity

Weighted average produces at least as much output as the original inputs.

(Kills increasing returns to scale)

Other technical

Definition

Production function is the relationship between the quantities of inputs used and the maximum quantity of output that can be produced.

Example

Two factors of production: Capital, K, and Labour, L:

 $q=f\left(L,K\right)$

Immediate run

All the factors are almost fixed. (Basically choice is between inactivity and fixed production)

$$q=f\left(\bar{L},\bar{K}\right)$$

Short run

One or more of the inputs (factors) are on fixed level.

$$q = f(L, \bar{K})$$

 Long run All inputs can be varied.

Technology Average and Marginal Products

Definitions

Average product is the ratio of output to input used for production

$$AP_L = \frac{q}{L}$$

Marginal product is the change in total output resulting from a marginal change in input (holding other factors constant):

$$MP = \frac{\partial f\left(L,\bar{K}\right)}{\partial L}$$

Aslanyan (VŠE Praha)

11/09 10 / 25

Technology Average and Marginal Products

Fact

Marginal product equals to the average product when the average product reaches its highest level:

$$\frac{\partial}{\partial L} \left(\frac{q}{L} \right) = 0$$
$$\frac{\partial}{\partial L} \cdot L - \frac{\partial}{\partial L} \cdot q = 0$$
$$\frac{\partial}{\partial Q} = \frac{q}{L}$$

11/09 11 / 25

Technology Law of diminishing marginal returns

Fact

The law of diminishing marginal returns (or product) holds that, if a firm keeps increasing an input, holding all other inputs and technology constant, the corresponding increases in output will become smaller eventually.

 Diminishing returns vs. diminishing marginal returns

Technology Law of diminishing marginal returns

Was the Revd Thomas R. Malthus wrong?

Fact

The law of diminishing marginal returns (or product) holds that, if a firm keeps increasing an input, holding all other inputs and technology constant, the corresponding increases in output will become smaller eventually.

< □ > < □ > < □ > < □ >

Technology

Isoquants

Definition

Isoquant is a curve that shows the efficient combinations of inputs that can produce single (iso-) level of output (*quant*-ity).

Production

Technology Isoquants: Substitutes and compliments

Definition

Marginal rate of technichal substitution is the number of extra units of one input needed to replace one unit of another input while keeping the amount of output constant:

$$MRTS = -\frac{MP_L}{MP_K} = \frac{dK}{dL}$$

Aslanyan (VŠE Praha)

Technology Returns to Scale

Definition

Increasing returns to scale is a property of a production function whereby output rises more than in proportion to an equal increase in all inputs.

Definition

Decreasing returns to scale is a property of a production function whereby output rises less than in proportion to an equal increase in all inputs.

Definition

Constant returns to scale is a property of a production function whereby when all inputs are increased by certain percentage, output increases by that same percentage.

 \mathbf{COSTS}

Aslanyan (VŠE Praha)

। 11/09 17/2

・ロト ・聞 ト ・ ヨト ・ ヨト

Definition

Production costs:

$$w_1x_1+w_2x_2=\bar{C}$$

rearrange:

$$x_2 = \frac{\bar{C}}{w_2} - \frac{w_1}{w_2} x_1$$

All the combinations of inputs that require the same (iso-) total expenditure (-cost) is called isocost line.

4 3 > 4 3

Problem

Production costs:

 $\min w_1 x_1 + w_2 x_2$

$$s.t. \quad f(x_1, x_2) = \bar{y}$$

Solution

Cost function

$$C = c(w_1, w_2, y)$$

Condition

$$\frac{MP_1}{MP_2} = \left[-MRTS = \right] \frac{w_1}{w_2}$$

Aslanyan (VŠE Praha)

Fact

Condition

$$\frac{MP_1}{MP_2} = \left[-MRTS =\right] \frac{w_1}{w_2}$$

- Lowest isocost rule!
- Tangency rule!
- Last dollar rule (pick the bundle of inputs where the last dollar spent on one input gives as much extra output as the last dollar spent on any other input).

Definitions

Fixed cost (F) is a production expense that does not vary with output. Variable cost (VC) is a production expense that changes with the quantity of output produced.

Cost (total cost, C) is the sum of a firm's variable and fixed costs:

$$C = VC + F$$

Definition

Marginal cost (MC) the amount by which a firm's cost changes of the firm produces one more unit of output (units being infinitesimally small):

$$MC = rac{\partial C}{\partial q} \left[= rac{\partial VC}{\partial q}
ight]$$

Image: Image:

.

Definitions

Average fixed cost (AFC) is the fixed cost divided by the units of output produced:

AFC = F/q

Average variable cost (AVC) is the variable cost divided by the units of output produced:

AVC = VC/q

Average cost (AC) is the sum of the two: AC = AVC + AFC

Costs and Returns-to-scale CRS, IRS, DRS

Example (DRS)

Costs and Returns-to-scale CRS, IRS, DRS

Fact

$$MC = \left[\frac{\partial VC}{\partial q} = w\frac{\partial L}{\partial q} = \right]\frac{w}{MP_{l}}$$
$$AVC = \left[\frac{VC}{q} = w\frac{L}{q} = \right]\frac{w}{AP_{L}}$$

Aslanyan (VŠE Praha)

Problem

Long run cost minimisation:

 $\min_{x_1, x_2} w_1 x_1 + w_2 x_2$

$$s.t. \quad f(x_1, x_2) = \bar{y}$$

Problem

Short run cost minimisation:

 $\min_{x_1} w_1 x_1 + w_2 \bar{x}_2$

$$s.t. \quad f(x_1,\bar{x}_2)=\bar{y}$$

Fact

SR problem is LR problem with constraint $x_2 = \bar{x}_2$

