Lecture 3: Demand Neoclassical Theory of Consumption

Economics II: Microeconomics

VŠE Praha

October 2009

Micro (VŠE)

10/09 1 / 28

• Consumers:

- People.
- Households.
- Applications.
- Firms:
 - Internal Organisation.
 - Industrial Organisation.
- Equilibrium:
 - Holds.
 - Does not hold.

• Consumers:

- People. Now
- Households.
- Applications.
- Firms:
 - Internal Organisation.
 - Industrial Organisation.
- Equilibrium:
 - Holds.
 - Does not hold.

э

PEOPLE CHOOSE THE BEST THINGS THEY CAN AFFORD.

PEOPLE CHOOSE THE MOST PREFERRED BUNDLE THEY CAN AFFORD.

Consumers CHOOSE THE MOST PREFERRED BUNDLE THEY CAN AFFORD.

Definition

A consumer is an economic agent who makes a decision on consumption.

Basics: Affordable Bundles

Definition

Budget constraint: The bundles of goods that can be bought if the entire budget is spent on those goods at given prices.

Example

Micro (VŠE)

10/09 5 / 28

10/09 6 / 28

3

- 4 ∃ ▶

CONSUMERS *CHOOSE* THE MOST PREFERRED BUNDLE FROM THEIR BUDGET SET.

Basics

.

Consumer's choice

(a) Interior Solution

Fact

Consumers' choice is a combo of their preferences and budget.

Micro (VŠE)

Consumer's choice

Fact

Consumers' choice is a combo of their preferences and budget.

Lemma

Consumer chooses the bundle where the indiference curve is tangent to the budget line.

Micro (VŠE)

Consumer's choice

Internet books per month

Consumer optimisation problem: Calculus approach

Problem

 $\max_{x_1,x_2} U\left(x_1,x_2\right),$

 $s.t. \quad p_1x_1 + p_2x_2 = m$

Problem (Lagrange function)

$$\max_{x_1,x_2,\lambda} \mathcal{L} = U(x_1,x_2) + \lambda (m - p_1 x_1 - p_2 x_2)$$

3 🕨 🖌 3

Consumer optimisation problem: Calculus approach

Problem

$$\max_{x_1,x_2,\lambda} \mathcal{L} = U(x_1,x_2) + \lambda (m - p_1 x_1 - p_2 x_2)$$

Solution

First order conditions:

$$\frac{\partial \mathcal{L}}{\partial x_1} = 0: \frac{\partial U(x_1, x_2)}{\partial x_1} - \lambda p_1 = 0$$
(1)

$$\frac{\partial \mathcal{L}}{\partial x_2} = 0: \frac{\partial U(x_1, x_2)}{\partial x_2} - \lambda p_2 = 0$$
(2)

$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0: m - p_1 x_1 - p_2 x_2 = 0$$

Micro (VŠE)

10/09 12 / 28

(3)

Consumer optimisation problem (Cont'd)

Problem

Solution

From (1) and (2):

$$\left[\frac{MU_{x_1}}{MU_{x_2}}=\right]\frac{\frac{\partial U(x_1,x_2)}{\partial x_1}}{\frac{\partial U(x_1,x_2)}{\partial x_2}}=\frac{p_1}{p_2}$$

Equations (3) and (4) give the solution: $x_1^*(p_1, p_2, m)$ and $x_2^*(p_1, p_2, m)$

Definition

The pair (x_1^*, x_2^*) is the optimal choice of the consumer.

Definition

Demand function: $x = x (p_1, p_2, m)$

Micro (VŠE)

(4)

Utility function and indifference curves

The indifference curve is the utility function on a fixed level.

10/09 14 / 28

Full derivative of the utility function $U(x_1, x_2)$:

$$dU = \frac{\partial U}{\partial x_1} \cdot dx_1 + \frac{\partial U}{\partial x_2} \cdot dx_2$$
(5)

Fact

The indifference curve is the utility function on a fixed level.

So (5) can be rewritten as:

$$\frac{\frac{\partial U(x_1, x_2)}{\partial x_1}}{\frac{\partial U(x_1, x_2)}{\partial x_2}} = -\frac{dx_2}{dx_1} \quad (6)$$

Corollary From (4) and (6) we have: $MRS = \frac{p_1}{2}$ (7)Fact The internal rate of change is equal to the external rate of change.

Consumer Optimisation Problem

Necessary condition

$$MRS = \frac{p_1}{p_2}$$

internal RCh = external RCh
slope IC = slope BC
benefit of consuming
x_1 as opposed to x_2 = opportunity cost of
x_1 in terms of x_2

イロト イ団ト イヨト イヨト

Further studies in Neoclassical Theory!

Thank you!

Image: Image:

3 🕨 🖌 3

Demand function

Definition

Demand: The quantity demanded at each possible price.

• Demand function:

$$x_1 = x_1 (p_1, \bar{p}_2, \bar{m})$$

(a) Indifference Curves and Budget Constraints

Demand function

Definition

Demand: The quantity demanded at each possible price.

• Demand function:

 $x_1 = x_1 \left(p_1, ar{p}_2, ar{m}
ight)$

• Comparative statics

Demand function

Definition

Demand: The quantity demanded at each possible price.

• Demand function:

 $x_1 = x_1 \left(p_1, \bar{p}_2, \bar{m}
ight)$

- Comparative statics
 - Shifts in m.

Demand function

Definition

Demand: The quantity demanded at each possible price.

Demand function:

 $x_1 = x_1 (p_1, \bar{p}_2, \bar{m})$

- Comparative statics
 - Shifts in *m*.
 - Shifts in p_1 .

(a) Indifference Curves and Budget Constraints

Demand function

Definition

Demand: The quantity demanded at each possible price.

• Demand function:

 $x_1 = x_1 \left(p_1, \bar{p}_2, \bar{m}
ight)$

- Comparative statics
 - Shifts in m.
 - Shifts in p_1 .
 - Shifts in p₂.

10/09 18 / 28

Income expansion path and Engel curve

- Income expansion path
 - Bundles demanded at different income levels
 - Income-consumption curve
 - income offer curve
- Engel curve

 $x_1 = x_1 \left(\bar{p}_1, \bar{p}_2, m \right)$

- Demand as a function of income only!
- Q: Shape of IEP and EC

(a) Indifference Curves and Budget Constraints

Engel curve for perfect substitute

20 / 28

Definition

The income elasticity of demand (or income elasticity) is the precentage change in the quantity demanded in response to a given percentage change in income.

$$\varepsilon_{M} = \frac{\%\Delta x_{1}}{\%\Delta m}$$
$$= \frac{\frac{\Delta x_{1}}{x_{1}}}{\frac{\Delta m}{m}} = \frac{\frac{x_{1}'-x_{1}}{x_{1}}}{\frac{m'-m}{m}}$$
$$= \frac{\partial x_{1}}{\partial m} \cdot \frac{m}{x_{1}}$$

Note:

$$\varepsilon_M \neq \frac{\Delta x_1}{\Delta m}$$

Micro (VŠE)

• Normal good : $\varepsilon > 0$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Normal good : $\varepsilon > 0$
- Inferior good: $\varepsilon < 0$

3 🕨 🖌 3

- Normal good : $\varepsilon > 0$
- Inferior good: $\varepsilon < 0$
- Quasilinear: $\varepsilon = 0$

- Normal good : $\varepsilon > 0$
- Inferior good: $\varepsilon < 0$
- Quasilinear: $\varepsilon = 0$
- Luxury goods: $\varepsilon > 1$

- - I

- Normal good : $\varepsilon > 0$
- Inferior good: $\varepsilon < 0$
- Quasilinear: $\varepsilon = 0$
- Luxury goods: $\varepsilon > 1$
- Necessities: $\varepsilon < 1$

-

- Normal good : $\varepsilon > 0$
- Inferior good: $\varepsilon < 0$
- Quasilinear: $\varepsilon = 0$
- Luxury goods: $\varepsilon > 1$
- Necessities: $\varepsilon < 1$
- Homothetic: $\epsilon = 1$

-

Demand function (revisited)

• Demand function:

 $x_1 = x_1 \left(p_1, \bar{p}_2, \bar{m} \right)$

- Comparative statics
 - Shifts in m.
 - Shifts in p_1 .
 - Shifts in p₂.
- Relative price as well as income change!

(a) Indifference Curves and Budget Constraints

Definition

The change in demand due to the change in the rate of exchange between the two goods is called **substitution effect.** (changed own price, other prices and utility constant).

Definition

The change in demand due to the change in purchasing power is called **income effect.** (prices are hold constant)

Income and Substitution Effect

• Substitution effect is always negative due to the 'well-behaved' indifference curves!

Micro (VŠE)

10/09 25 / 28

Income and Substitution Effect

- Substitution effect is always negative due to the 'well-behaved' indifference curves!
- What about the direction of the income effect?

Micro (VŠE)

10/09 25 / 28

Income and Substitution Effect

Giffen goods (Inferior)

Micro (VŠE)

10/09 26 / 28

Price and cross-price changes

• Own price change

∃ ▶ ∢

Price and cross-price changes

- Own price change
 - Ordinary goods:

$$\frac{\partial x_1}{\partial p_1} < 0$$

э

- Own price change
 - Ordinary goods:

$$\frac{\partial x_1}{\partial p_1} < 0$$

$$\frac{\partial x_1}{\partial p_1} > 0$$

э

- Own price change
 - Ordinary goods:

$$\frac{\partial x_1}{\partial p_1} < 0$$

$$\frac{\partial x_1}{\partial p_1} > 0$$

• Cross price change

- Own price change
 - Ordinary goods:

$$\frac{\partial x_1}{\partial p_1} < 0$$

$$\frac{\partial x_1}{\partial p_1} > 0$$

- Cross price change
 - substitute (not perfect)

$$\frac{\partial x_1}{\partial p_2} > 0$$

- Own price change
 - Ordinary goods:

$$\frac{\partial x_1}{\partial p_1} < 0$$

$$\frac{\partial x_1}{\partial p_1} > 0$$

- Cross price change
 - substitute (not perfect)

$$\frac{\partial x_1}{\partial p_2} > 0$$

• complement (not perfect)

$$\frac{\partial x_1}{\partial p_2} < 0$$

Further applications!

Thank you!

Image: A matrix

→ 3 → 4 3