Economics II: Microeconomics

VŠE Praha

September 2009

Micro (VŠE)

• Consumers:

- People.
- Households.
- Applications.
- Firms:
 - Internal Organisation.
 - Industrial Organisation.
- Equilibrium:
 - Holds.
 - Does not hold.

• Consumers:

- People. Now
- Households.
- Applications.
- Firms:
 - Internal Organisation.
 - Industrial Organisation.
- Equilibrium:
 - Holds.
 - Does not hold.

-

PEOPLE CHOOSE THE BEST THINGS THEY CAN AFFORD.

Micro (VŠE)

Basics

- - I

PEOPLE CHOOSE THE BEST THINGS THEY CAN AFFORD.

Micro (VŠE)

Basics

Consumption theory

09/09 5 / 24

- - I

THE BEST THINGS:

Definition

Consumtion bundle is a complete list of the goods & services that are involved in the choice problem that is investigated. (say, X and Y).

Fact		
Notation: Strict preference:		$X \succ Y$
Indifference:		$X \sim Y$
Alternative notation:		
Weak preference:	$X \succeq Y$	

Relationship between \succ , \sim ,and \succeq

Lemma						
if	$X \succeq Y$	and	$Y \succeq X$	then	?	
if	$X \succeq Y$	but not	$Y \succeq X$	then	?	

Relationship between \succ , \sim , and \succeq

Lemma						
if	$X \succeq Y$	and	$Y \succeq X$	then	$X \sim Y$	
if	$X \succeq Y$	but not	$Y \succeq X$	then	$X \succ Y$	

Micro (VŠE)

Homo-economicus

• The economic agent (or economic human)

Homo-economicus

- The economic agent (or economic human)
 - Rational

Homo-economicus

- The economic agent (or economic human)
 - Rational
 - Egoist (or self-interested)

Rationality

∃ ► < ∃ ►</p>

Axiom

- 3rd Axiom: Transitive preferences
 - If $X \succ Y$ and $Y \succ Z$ then $X \succ Z$
 - If X ~ Y and Y ~ Z then X ~ Z or
 - If $X \succeq Y$ and $Y \succeq Z$ then $X \succeq Z$

Example

The Dutch-booking...

Indifference curves

09/09 12 / 2

Z, Pizzas per semester

Proposition

Indifference curves representing distinct levels of preference cannot cross.

Proof.

Otherwise the transitivity axiom is violated.

 I^0 : $a \sim e$ I^1 : $b \sim e$ Q : Do the axioms hold?

Consumption theory

09/09 14 / 24

Indifference curves

PSYCH. ASSUMPTIONS

Axiom

4th Axiom: Insatiable (monotonic) preferences

- If $X \gg Y$ then $X \succ Y$
- If X > Y then $X \succeq Y$

5th Axiom: Convex preferences

- (w) If $X \sim Y$ then $\alpha X + (1 - \alpha) Y \succeq X$ where $\alpha \in (0, 1)$
- (s) If $X \sim Y$ then $\alpha X + (1 - \alpha) Y \succ X$

Indifference curves: 'No-No-No' Cases

09/09 17 / 2

э

09/09 18 / 24

Z, Pizzas per semester

Definition

Marginal rate of substitution (MRS) is the rate at which the consumer is just willing to substitute one good for the other - MRS is the (absolute of the) slope of an indifference curve at a particular point:

 $\frac{\Delta x_2}{\Delta x_1}$ or $\frac{dx_2}{dx_1}$

Diminishing Marginal Rate of Substitution

09/09 20 / 2

Further studies in Neoclassical Theory!

Thank you!

Image: Image:

3 🕨 🖌 3

- measure of happiness
- cardinal utility
- ordinal utility

Definition

Utility function: A way of assigning a number to every possible consumption bundle, such taht more preferred bundles get assigned larger numbers.

Theorem

Given the assumptions of Rationality and Monotonicity, $\exists u (\bullet) \quad s.t. \quad (x_1, x_2) \succ (y_1, y_2) \iff u (x_1, x_2) > u (y_1, y_2).$

Proof.

Do not need for this course.

∃ ► < ∃ ►</p>

Lemma

Any monotonic transformation of the original utility function is a utility function representing the same preferences.

Proof.

1. Suppose $u(\bullet)$ is the utility function representing the preferences \succ_P .

$$(x_1, x_2) \succ_{\mathcal{P}} (y_1, y_2) \Longleftrightarrow u(x_1, x_2) > u(y_1, y_2)$$

$$(1)$$

2. And suppose that f(u) is a monotonic transformation of $u(\bullet)$.

$$u(x_1, x_2) > u(y_1, y_2) \iff f(x_1, x_2) > f(y_1, y_2)$$
 (2)

3. From (1) and (2) follows:

Micro (

$$(x_1, x_2) \succ_P (y_1, y_2) \iff f(x_1, x_2) > f(y_1, y_2)$$
(3)

(3)

(5)

(3)

(3)