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1. First-price, sealed-bid auction /static game of incomplete information/ 

 

Consider a classical market mechanism called first-price, sealed-bid auction. There is a single 

good offered for sale. Two bidders have independent valuations of the good. The valuation of a 

bidder is private information, nobody else than the bidder knows it but all have prior beliefs about 

it. The bidders simultaneously submit their bids (in a sealed envelope). After the bids are 

submitted, the auctioneer opens the envelopes. The higher bidder wins the good and pays the 

(first) price she bid; the other bidder gets and pays nothing. In case of a tie, the winner is 

determined by a flip of a coin. The bidders are risk-neutral. All of this is common knowledge. 

 

Normal-form Representation: 

 

PLAYERS: bidder i=1,2 

TYPE SPACES: bidder i’s valuation vi of the good sold 

BELIEFS: vi is independently and uniformly distributed on [0,1] 

ACTION SPACES: bidding function   0ii vb  

PAYOFFS: Bidder i’s payoff function is given by the following expression: 
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Solution: 

 

We search for Bayesian Nash Equilibrium where player 1’s strategy is a best response to player 

2’s strategy, and vice versa. 

 

First, let’s construct the players’ strategy spaces. 

In a static Bayesian game, a strategy is a function that maps player’s type into her action. 

 

Here, a strategy for bidder i is a function bi(vi) specifying the bid that each of i’s types (i.e., 

valuations) would choose. Respectively, the pair of strategies     2211 , vbvb  is a Bayesian Nash 

equilibrium if for each vi in [0,1], bi(vi) maximizes bidder i’s expected payoff given the common 

prior beliefs: 
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Let’s check for a linear equilibrium that is a Bayesian Nash equilibrium where both bidders 

choose a linear strategy as follows: 

 

  11111 vcavb   and   22222 vcavb   



M9302 Mathematical Models in Economics 

 HANDOUT 7 - 18.05.2011  

18.05.2011 Georgi.Burlakov@cerge-ei.cz Page 2 of 8 

 

N.B. The latter assumption does not imply that there could not be non-linear equilibrium solution. 

It just says that here we are mainly interested in checking if linear equilibrium exists. 

 

The objective function (*) could be simplified by using the fact that when jjjjj vcavb )(  and 

vi is believed to be uniformly distributed, bj must also be uniformly distributed (i.e. 

  
jji vbb Prob =0). Namely it becomes: 
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Since it is pointless for player i to bid below player j’s minimum bid and stupid for i to bid above 

j’s maximum bid, we have jjij caba       (***) 

Then, 
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which after substitution to (**) and taking first-order condition for optimality yields: 
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That in order to hold together with (***) the following restriction on ja  need to be introduced: 
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Hence, by comparison we get 
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ic . However, the solution is symmetric. Therefore, 
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best response strategy for bidder i is 
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****************************************************************************** 

Asymmetric discrete-value, first-price, sealed-bid auction: 

 

Consider an auction with 2 bidders. There is one object for sale. 

The value which bidder 1 attaches to the object is 1 with probability ½, and 5 with 

probability ½. 

The value which bidder 2 attaches to the object is 0 with probability ¼, 3 with probability ½ 

and 7 with probability ¼. 

Bids can only be integers: 0, 1, 2, 3, … etc. to infinity. 
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Find the Bayesian Nash equilibrium i.e. the optimal bids in this auction game. 

 

Hint: For each type of bidder i (i = 1, 2), compute the expected payoffs of a feasible bid, 

starting from the lowest and working your way up to the highest integer. 

 

Solution: 

 

Expected payoffs of the two bidders are given by the following general expressions: 
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Let v2 = 0. Hence, the optimal bid for bidder 2 is b2(0) = 0 because anything else would yield a 

negative payoff. 

 

Let v1=1, b1=1. Then, Eu1(1)=0 

Let v1=1, b1=0. Then,        
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Hence, the optimal bid for bidder 2 is b1(1) = 0. 

 

Let v2=3, b2=3. Then, Eu2(3)=0 

Let v2=3, b2=2. Then,        
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Let v2=3, b2=0. Then,      
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Hence, the optimal bid for bidder 2 is b2(3) = 1. 
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Let v1=5, b1=0. Then,      
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Hence, the optimal bid for bidder 2 is b1(5) = 2. 
 

Let v2=7, b2=7. Then, Eu2(7)=0 
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Hence, the optimal bid for bidder 2 is b2(7) = 3. 
 

Finally, the Bayesian Nash equilibrium is given by the following pair of discrete functions: 
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2. Signaling game /dynamic game of incomplete information/ 

 

A signaling game is a dynamic game of incomplete information involving two players: a Sender 

(S) and a Receiver (R). The timing of the game is as follows: 

 

1) Nature draws a type ti for the Sender from a set of feasible types T = {t1,…,tI} 

according to a probability distribution p(ti), where p(ti)>0 for every i and p(t1)+…+p(tI)=1. 

 

2) The Sender observes ti and then chooses a message mj from a set of feasible messages 

M = {m1,…,mI}. 

 

3) The Receiver observes mj (but not ti) and then chooses an action ak from a set of 

feasible actions A = {a1,…,aK}. 

 

4) Payoffs are given by US(ti,mj,ak) and UR(ti,mj,ak). 

 

The strategies in the signaling game are different for the Sender and the Receiver and are given 

by the functions: 

A pure strategy for the Sender is a function m(ti) specifying which message will be chosen for 

each type that nature might draw. A pure strategy for the Receiver is a function a(mj) specifying 

which action will be chosen for each message that the Sender might send. 

 

Pure-strategy perfect Bayesian equilibrium in a signaling game – a pair of strategies m*(ti) and 

a*(mj) and a belief  ji mt  satisfying Signaling Requirements (1), (2R), (2S) and (3), as follows: 

 

Signaling Requirement 1: After observing any message mj from M, the Receiver must have a 

belief about which types could have sent mj. This belief is denoted by the probability distribution 

 ji mt , where   0ji mt  for each ti in T, and  

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Signaling Requirement 2R: For each mj in M, the Receiver’s action a*(mj) must maximize the 

Receiver’s expected utility, given the belief  ji mt  about which types could have sent mj. That 

is, a*(mj) solves    

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Signaling Requirement 2S: For each ti in T, the Sender’s message m*(ti) must maximize the 

Sender’s utility, given the Receiver’s strategy a*(mj). That is, m*(ti) solves 

  jjiS
M

mamtU *,,max
jm 

. 
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Signaling Requirement 3: For each mj in M, if there exists ti in T such that m*(ti)=mj, then the 

Receiver’s belief at the information set corresponding to mj must follow from Bayes’ rule and the 

Sender’s strategy i.e.    
 




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Extensive-form representation of a signaling game: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distinct from a standard dynamic game, the extensive-form representation of the signaling game 

starts not from a node on top but from node in the middle of the game tree. First move is made by 

Nature. It chooses the type of the Sender given a general prior belief about how likely is she to be 

any given type possible. The figure above presents an extensive form of the simplest possible 

case of a signaling game with only two possible types (t1 and t2) which are believed to be equally 

probable to be chosen. In the second stage, the sender observes its type but receiver does not 

observe it. So, the sender decides what a message to send to the receiver. In the example on the 

figure above, the Sender has two possible actions (L and R) to choose from. Respectively, after 

observing the message from the Sender, the Receiver updates its beliefs about how likely is she to 

be any of the two types given the message received and chooses the action which maximizes her 

expected payoff based on the updated (posterior) beliefs of the Receiver. The Receiver chooses 

between two possible actions (u and d), as well. 
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Solution: 

 

Pooling on L: 

Suppose that there is a (pooling) equilibrium in which the Sender’s strategy is (L,L) i.e. chooses 

to send message L no matter what is her type. 

 

Then, the Receiver’s posterior belief (p, 1-p) will coincide with the prior one after observing L. 

Hence the expected payoffs of the Receiver from playing u and d respectively are as follows: 

 

5.015.005.0)(

5.345.035.0)(





dEu

uEu

R
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So, the best response of the Receiver to message L is to take action u. 

 

Now, it remains to check if the pooling strategy (L,L) is optimal for the both types of the Sender 

or there is an incentive for at least one of them to deviate to R. 

 

For the purpose, we need to identify first the values of the Receiver’s belief off the equilibrium 

path (i.e. after observing message R), for which the Receiver would take action u or d, 

respectively. The value of q for which both strategies yield the same expected payoff to the 

Receiver is given by the solution of the following equation: 

 

)(2)1(00)1(1)( dEuqqqquEu RR   

 

i.e. 
3

2
q  

 

Apparently, if 
3

2
q , the Receiver would find it optimal to take action u given message R, which 

would make type t1 of the Sender better off of deviating to R, since this will bring her 2 rather 

than 1 given message L was sent. However for any 
3

2
q , the Receiver would take action d as 

optimal, so the Sender would not have an incentive to deviate. Hence, there exists a pooling 

perfect Bayesian Nash equilibrium [(L,L),(u,d),p=.5, 
3

2
q ]. 

 

Pooling on R: 

Suppose that there is a (pooling) equilibrium in which the Sender’s strategy is (R,R) i.e. chooses 

to send message R no matter what is her type. 

 

Then, the Receiver’s posterior belief (q, 1-q) will coincide with the prior one after observing R. 

Hence the expected payoffs of the Receiver from playing u and d respectively are as follows: 
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So, the best response of the Receiver to message R is to take action d. 

 

Now, it remains to check if the pooling strategy (R,R) is optimal for the both types of the Sender 

or there is an incentive for at least one of them to deviate to L. 

 

For the purpose, we need to identify first the values of the Receiver’s belief off the equilibrium 

path (i.e. after observing message L), for which the Receiver would take action u or d, 

respectively. It is obvious that u is a strictly dominant strategy of the Receiver for any p: 

 

)(1)1(04)1(3)( dEuppppuEu RR   

 

In this case, however, type t1 of the Sender would be better-off of sending message L, since this 

will bring her 1 rather than 0 given that message R was sent. Hence, there is no equilibrium in 

which the Sender plays (R,R). 

 

Separation with t1 playing L: 

Suppose that there is a (separating) equilibrium in which the Sender’s strategy is (L,R) i.e. t1 

chooses to send message L, while t2 chooses to send message R. After observing the message L 

or R, the updated belief of the Receiver will be p=1 or q=0, respectively. Then, the best response 

of the Receiver is u to message L and d to message R.  

 

Now, it remains to check if the pooling strategy (L,R) is optimal for the both types of the Sender 

or there is an incentive for at least one of them to deviate given the Receiver’s optimal strategy 

(u,d). Apparently, type t2 has an incentive to deviate by sending message L rather than R, to 

which the Receiver would respond with u, and the Sender of type t2 would earn a payoff of 2, 

which exceeds t2’s payoff of 1 from playing R. Hence, there is no equilibrium in which the 

Sender plays (L,R). 

 

Separation with t1 playing R: 

Suppose that there is a (separating) equilibrium in which the Sender’s strategy is (R,L) i.e. t1 

chooses to send message R, while t2 chooses to send message L. After observing the message L 

or R, the updated belief of the Receiver will be p=0 or q=1, respectively. Then, the best response 

of the Receiver is u both to message L and R which gives both types of the Sender a payoff of 2. 

 

Now, it remains to check if the pooling strategy (R,L) is optimal for the both types of the Sender 

or there is an incentive for at least one of them to deviate given the Receiver’s optimal strategy 

(u,d). Apparently, type t1 has no incentive to deviate by sending message L rather than R, to 

which the Receiver would respond with u, and the Sender of type t2 would earn a payoff of only 

1, which is less than t2’s payoff of 2 from playing R. The same is true for t1 having no incentive 

to deviate by sending message R instead of L. Hence, there exists a separating perfect 

Bayesian Nash equilibrium [(R,L),(u,u),p=0,q=1]. 


