CEE Growth \& Development

UPCES
Lecture 13

Fall Semester, 2014

- Cobb-Douglas Production Function

$$
Y_{t}=A K_{t}^{\alpha} L_{t}^{1-\alpha}
$$

- Fundamental Law of Motion

$$
\Delta K_{t}=s \cdot Y_{t}-\delta \cdot K_{t}
$$

- Steady state
(1) $L_{t+1}=L_{t}$: GDP and GDPpc are in steady state

$$
\frac{\Delta Y_{t}}{Y_{t}}=\frac{\Delta y_{t}}{y_{t}}=0\left[=\frac{\Delta L_{t}}{L_{t}}\right]
$$

Cobb-Douglas Production Function

$$
Y_{t}=A K_{t}^{\alpha}\left(h L_{t}\right)^{1-\alpha}
$$

- Factors of production
- capital
- labour
- human capital

$$
\underbrace{Y_{t}}_{\text {output }}=\overbrace{A}^{\text {productivity }} \cdot \underbrace{K_{t}^{\alpha}\left(h L_{t}\right)^{1-\alpha}}_{\text {factors of productin }}
$$

Definitions

Productivity is the effectiveness with which factors of production are converted into output.

Development accounting

- Productivity

$$
A_{t}=\frac{Y_{t}}{K_{t}^{\alpha}\left(h L_{t}\right)^{1-\alpha}}
$$

Development accounting

- Productivity

$$
A_{t}=\frac{Y_{t}}{K_{t}^{\alpha}\left(h L_{t}\right)^{1-\alpha}}
$$

- Ratio of productivity

$$
\frac{A_{t}^{M D}}{A_{t}^{U S}}=\frac{\frac{Y_{t}^{M D}}{\left(K_{t}^{M D}\right)^{\alpha}\left(h^{M D} L_{t}^{M D}\right)^{1-\alpha}}}{\frac{Y_{t}^{U S}}{\left(K_{t}^{U S}\right)^{\alpha}\left(h^{U S} L_{t}^{U S}\right)^{1-\alpha}}}
$$

Growth accounting

- Production

$$
\begin{aligned}
Y_{t} & =A_{t} K_{t}^{\alpha}\left(h_{t} L_{t}\right)^{1-\alpha} \\
y_{t} & =A_{t} k_{t}^{\alpha} h_{t}^{1-\alpha}
\end{aligned}
$$

Growth accounting

- Production

$$
\begin{aligned}
Y_{t} & =A_{t} K_{t}^{\alpha}\left(h_{t} L_{t}\right)^{1-\alpha} \\
y_{t} & =A_{t} k_{t}^{\alpha} h_{t}^{1-\alpha}
\end{aligned}
$$

- in log

$$
\ln y_{t}=\ln A_{t}+\alpha \ln k_{t}+(1-\alpha) \ln h_{t}
$$

Growth accounting

- Production

$$
\begin{aligned}
Y_{t} & =A_{t} K_{t}^{\alpha}\left(h_{t} L_{t}\right)^{1-\alpha} \\
y_{t} & =A_{t} k_{t}^{\alpha} h_{t}^{1-\alpha}
\end{aligned}
$$

- in log

$$
\ln y_{t}=\ln A_{t}+\alpha \ln k_{t}+(1-\alpha) \ln h_{t}
$$

- growth rate (i.e. derivative of log)

$$
\frac{\dot{y}}{y}=\frac{\dot{A}}{A}+\alpha \frac{\dot{k}}{k}+(1-\alpha) \frac{\dot{h}}{h}
$$

Total Growth $=$ Productivity Growth + Factor Growth Total Growth $=$ Intensive Growth + Extensive Growth

Econometric examples

Growth Accounting Results for Central and Eastem European Countries, 1970-1997

Output growth TFP growth Factor growth							Output growth	TFP growth	Factor growth
Bulgaria	Avg. 1971-97	1.1	0.8	0.3	Poland	Avg. 1971-97	2.7	0.9	1.8
	Avg. 1971-80	6.9	4.6	2.3		Avg. 1971-80	5.9	2.7	3.2
	Avg. 1981-90	1.9	2.1	-0.2		Avg. 1981-90	0	-0.3	0.3
	Avg. 1991-97	-8.8	-6.2	-2.6		Avg. 1991-97	1.8	0.1	1.7
Croatia	Avg. 1971-95	1.1	1.1	0	Romania	Avg. 1971-97	3.1	1.9	1.2
	Avg. 1971-80	5.7	3.3	2.4		Avg. 1971-80	9.4	5.6	3.8
	Avg. 1981-90	-0.8	0.9	-1.7		Avg. 1981-90	0.4	1.3	-0.9
	Avg. 1991-95	-4.2	-3.2	-1.0		Avg. 1991-97	-2.4	-2.4	0
Czech R	Avg. 1971-97	0.5	-0.6	1.1	Slovak R	Avg. 1971-97	2.1	0.8	1.3
	Avg. 1971-80	3.4	1.7	1.7		Avg. 1971-80	5.1	2.9	2.2
	Avg. 1981-90	0.8	0.2	0.6		Avg. 1981-90	1.5	0.8	0.7
	Avg. 1991-97	-4.2	-5.1	0.9		Avg. 1991-97	-1.6	-2.3	0.7
Hungary	Avg. 1971-96	2.8	2.4	0.4	Slovenia	Avg. 1971-95	3.7	2.6	1.1
	Avg. 1971-80	4.9	3.2	1.7		Avg. 1971-80	5.7	2.7	3.0
	Avg. 1981-90	1.1	2.1	-1.0		Avg. 1981-90	-0.9	-0.3	-0.6
	Avg. 1991-96	1.9	1.6	0.3		Avg. 1991-95	8.9	7.9	1.0

Source: Campos \& Coricelli (2002)

Econometric examples

Growth Accounting Results for Former Soviet Union Countries, 1970-1997

		Output growth	TFP growth	Factor growth			Output growth	TFP growth	Factor growth
Armenia	Avg. 1971-97	0.9	-0.8	1.7	Latvia	Avg. 1971-97	-0.1	-0.4	0.3
	Avg. 1971-80	6.4	2.3	4.0		Avg. 1971-80	3.6	1.4	2.2
	Avg. 1981-90	1.6	-0.6	2.2		Avg. 1981-90	2.3	1.3	1.0
	Avg. 1991-97	-7.9	-5.6	-2.2		Avg 1991-97	-8.6	-5.3	-3.4
Azerbaijan	Avg. 1971-97	-0.6	-2.9	2.3	Lithuania	Avg. 1971-97	0.8	-0.3	1.1
	Avg. 1971-80	6.1	2.6	3.5		Avg. 1971-80	2.8	0.0	2.8
	Avg. 1981-90	0.1	-2.3	2.4		Avg. 1981-90	3.7	2.3	1.4
	Avg. 1991-97	-11.5	-11.8	0.4		Avg. 1991-97	-6.3	-4.5	-1.8
Belarus	Avg. 1971-97	2.0	0.5	1.5	Moldova	Avg. 1971-97	-1.6	-2.5	0.9
	Avg. 1971-80	5.5	2.2	3.3		Avg. 1971-80	3.7	0.6	3.0
	Avg. 1981-90	3.1	1.5	1.6		Avg. 1981-90	2.1	0.9	1.2
	Avg. 1991-97	-4.5	-3.3	-1.2		Avg. 1991-97	-14.4	-11.9	-2.5
Estonia	Avg. 1971-97	1.1	0.2	0.9	Russia	Avg. 1971-97	0.1	-1.0	1.1
	Avg. 1971-80	3.8	1.4	2.4		Avg. 1971-80	3.9	1.1	2.8
	Avg. 1981-90	1.6	0.5	1.0		Avg. 1981-90	1.3	-0.3	1.6
	Avg. 1991-97	-3.4	-2.2	-1.2		Avg. 1991-97	-7.0	-5.4	-1.6
Georgia	Avg. 1971-97	-2.0	-2.8	0.8	Ukraine	Avg. 1971-97	-1.6	-2.4	0.8
	Avg. 1971-80	5.3	2.7	2.6		Avg. 1971-80	-1.6 2.9	-2.6	2.2
	Avg. 1981-90	0.0	-1.6	1.6		Avg. 1981-90	1.6	0.7	0.9
	Avg. 1991-97	-15.0	-12.2	-2.9		Avg. 1991-97	-12.5	-11.2	-1.3

Sounc: Campon \& Conicelll (2002)

Econometric examples

Figure 4. Sources of Growth in Transition Economies, 1996-2006
(In percentage points of GDP)

Source: Iradian, G. (2007). Rapid Growth in Transition Economies: Growth Accounting Approach. IMF WP164. p. 16

Productivity

$$
Y_{t}=A_{t} K_{t}^{\alpha}\left(h_{t} L_{t}\right)^{1-\alpha}
$$

Measurement

$$
A_{t}=\frac{Y_{t}}{K_{t}^{\alpha}\left(h_{t} L_{t}\right)^{1-\alpha}}
$$

Definition

Productivity is the effectiveness with which factors of production are converted into output.

$$
A_{t}=T_{t} \times E_{t}
$$

Technology under Communism

LADA. Perfect From The Beginning

Efficiency

Definition

Efficiency is avoiding a waste of time, effort, or resources

- Types of inefficiency
- Idle resources
- unemployment, overeducation, and the like

Efficiency

Definition

Efficiency is avoiding a waste of time, effort, or resources

- Types of inefficiency
- Idle resources
- unemployment, overeducation, etc.
- unproductive activities
- (civil) wars, robbery, 'krysha', rent-seeking and kleptocracy

Efficiency

Definition

Efficiency is avoiding a waste of time, effort, or resources

- Types of inefficiency
- Idle resources
- unemployment, overeducation, and the like
- unproductive activities
- (civil) wars, robbery, 'krysha', rent-seeking and kleptocracy
- Misallocation of Factors

Efficiency

Definition

Efficiency is avoiding a waste of time, effort, or resources

- Types of inefficiency
- Idle resources
- unemployment, overeducation, and the like
- unproductive activities
- (civil) wars, robbery, rent-seeking and kleptocracy
- Misallocation of Factors
- Technology Blocking and Luddites
- Creative destruction
- Missing markets
- e.g. financial
- Tacit knowledge
- Institutional inefficiencies

Technological growth

$$
\begin{aligned}
Y & =K^{\alpha}(A L)^{1-\alpha} \\
\dot{K} & =s Y-\delta K \\
\dot{L} & =n, \frac{\dot{A}}{A}=g
\end{aligned}
$$

Innovation and imitation

$$
\begin{aligned}
A_{t+1}-A_{t} & =u_{n}(\gamma-1) A_{t}+u_{m}\left(\breve{A}_{t}-A_{t}\right) \\
g_{t} & =\frac{A_{t+1}-A_{t}}{A_{t}}=u_{n}(\gamma-1)+u_{m}\left(a_{t}-1\right)
\end{aligned}
$$

- innovation ferquency, u_{n}
- innovation jump, γ
- imitation frequency, u_{m}
- technological frontier, \breve{A}_{t}
- measure of 'backwardness', a_{t}

Innovation and imitation

- Innovation:
- R\&D, paying for R\&D, Patents, 'Creative destruction'
- Imitation: Trickle up and down, Catching up \& Leapfrogging

