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1 Introduction

No problems.

2 The Solow Model

Exercise 1. A decrease in the investment rate.

A decrease in the investment rate causes the sỹ curve to shift down: at any
given level of k̃, the investment-technology ratio is lower at the new rate of sav-
ing/investment.

Assuming the economy began in steady state, the capital-technology ratio is
now higher than is consistent with the reduced saving rate, so it declines gradually,
as shown in Figure 1.

Figure 1: A Decrease in the Investment Rate
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The log of output per worker y evolves as in Figure 2, and the dynamics of

the growth rate are shown in Figure 3. Recall that log ỹ = α log k̃ and ˙̃
k/k̃ =

s′′k̃α−1 − (n+ g + d).

The policy permanently reduces the level of output per worker, but the growth
rate per worker is only temporarily reduced and will return to g in the long run.
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Figure 2: y(t)
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Figure 3: Growth Rate of Output per Worker
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Exercise 2. An increase in the labor force.

The key to this question is to recognize that the initial effect of a sudden in-
crease in the labor force is to reduce the capital-labor ratio since k ≡ K/L and K
is fixed at a moment in time. Assuming the economy was in steady state prior to
the increase in labor force, k falls from k∗ to some new level k1. Notice that this is
a movement along the sy and (n+d)k curves rather than a shift of either schedule:
both curves are plotted as functions of k, so that a change in k is a movement along
the curves. (For this reason, it is somewhat tricky to put this question first!)

At k1, sy > (n + d)k1, so that k̇ > 0, and the economy evolves according to
the usual Solow dynamics, as shown in Figure 4.

Figure 4: An Increase in the Labor Force
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In the short run, per capita output and capital drop in response to a inlarge flow
of workers. Then these two variables start to grow (at a decreasing rate), until in
the long run per capita capital returns to the original level, k∗. In the long run,
nothing has changed!

Exercise 3. An income tax.

Assume that the government throws away the resources it receives in taxes.
Then an income tax reduces the total amount available for investing and shifts the
investment curve down as shown in Figure 5.
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Figure 5: An Income Tax
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The tax policy permanently reduces the level of output per worker, but the
growth rate per worker is only temporarily lowered. Notice that this experiment
has basically the same results as that in Exercise 2.

For further thought: what happens if instead of throwing away the resources it
collects the government uses all of its tax revenue to undertake investment?

Exercise 4. Manna falls faster.

Figure 6 shows the Solow diagram for this question. It turns out, however,
that it’s easier to answer this question using the transition dynamics version of the

diagram, as shown in Figure 7. When g rises to g′, ˙̃
k/k̃ turns negative, as shown in

Figure 7 and Ȧ/A = g′, the new steady-state growth rate.

To see what this implies about the growth rate of y, recall that

ẏ

y
=

˙̃y

ỹ
+
Ȧ

A
= α

˙̃
k

k̃
+ g′.

So to determine what happens to the growth rate of y at the moment of the change

in g, we have to determine what happens to ˙̃
k/k̃ at that moment. As can be seen in

Figure 7, or by algebra, this growth rate falls to g − g′ < 0 — it is the negative of
the difference between the two horizontal lines.

Substituting into the equation above, we see that ẏ/y immediately after the
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Figure 6: An Increase in g
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Figure 7: An Increase in g: Transition Dynamics
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increase in g (suppose this occurs at time t = 0) is given by

ẏ

y
|t=0= α(g − g′) + g′ = (1 − α)g′ + αg > 0.

Notice that this value, which is a weighted average of g′ and g, is strictly less than
g′.

After time t = 0, ẏ/y rises up to g′ (which can be seen by looking at the
dynamics implied by Figure 6). Therefore, we know that the dynamics of the
growth rate of output per worker look like those shown in Figure 8.

Figure 8: Growth Rate of Output per Worker
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Exercise 5. Can we save too much?

From the standard Solow model, we know that steady-state output per capita is
given by y∗ = ( s

n+d)
α

1−α . Steady-state consumption per worker is (1 − s)y∗, or

c∗ = (1 − s)

(
s

n+ d

) α
1−α

.

From this expression, we see that an increase in the saving rate has two effects.
First, it increases steady-state output per worker and therefore tends to increase
consumption. Second, it reduces the amount of output that gets consumed.

To maximize c∗, we take the derivative of this expression with respect to s and
set it equal to zero:

∂c∗

∂s
= −

(
s

n+ d

) α
1−α

+ (1 − s)
α

1 − α

s
α

1−α
−1

(n+ d)
α

1−α

= 0.

Rearrange the equation, we have

1 =
1 − s∗

s∗
α

1 − α
,

and therefore
s∗ = α.

The saving rate which maximizes the steady-state consumption equals α.

Now turn to the marginal product of capital, MPK. Given the production
function y = kα, the marginal product of capital is αkα−1. Evaluated at the steady
state value k∗,

MPK = α (k∗)(α−1) = α

(
n+ d

s

)
.

When the saving rate is set to maximize consumption per person, s∗ = α, so
that the marginal product of capital is

MPK∗ = n+ d.

That is, the steady-state marginal product of capital equals n + d when consump-
tion per person is maximized. Alternatively, this expression suggests that the net
marginal product of capital — i.e. the marginal product of capital net of depre-
ciation — is equal to the population growth rate. This relationship is graphed in
Figure 9.
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Figure 9: Can We Save Too Much?
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If s > α, then steady-state consumption could be increased by reducing the
saving rate. This result is related to the diminishing returns associated with capital
accumulation. The higher is the saving rate, the lower is the marginal product of
capital. The marginal product of capital is the return to investing — if you invest
one unit of output, how much do you get back? The intuition is clearest if we
set n = 0 for the moment. Then, the condition says that the marginal product of
capital should equal the rate of depreciation, or the net return to capital should be
zero. If the marginal product of capital falls below the rate of depreciation, then
you are getting back less than you put in, and therefore you are investing too much.

Exercise 6. Solow (1956) versus Solow (1957).

a) This is an easy one. Growth in output per worker in the inital steady state is
2 percent and in the new steady state is 3 percent.

b) Recall equation (2.15)

ẏ

y
= α

k̇

k
+
Ḃ

B

ẏ
y α k̇k

Ḃ
B

Initial S.S. .02 1/3*(.02) 2/3*(.02)=.0133
New S.S. .03 1/3*(.03) 2/3*(.03)=.0200

Change .01 1/3*(.01) 2/3*(.01) = .0067
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In other words, Solow (1957) would say that 1/3 of the faster growth in output
per worker is due to capital and 2/3 is due to technology.

c) The growth accounting above suggests attributing some of the faster growth
to capital and some to technology. Of course this is true in an accounting sense.
However, we know from Solow (1956) that faster growth in technology is itself
the cause of the faster growth in capital per worker. It is in this sense that the
accounting picture can sometimes be misleading.
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3 Empirical Applications of Neoclassical Growth Models

Exercise 1. Where are these economies headed?

From equation (3.9), we get

ŷ∗ =

(
ŝK
x̂

) α
1−α

ĥ Â =

(
ŝK
̂(n+ 0.075)

) α
1−α

eψ(u−uU.S.)Â,

where the (̂ ) is used to denote a variable relative to its U.S. value and x = n+g+d.
The calculations below assume α = 1/3 and ψ = .10, as in the chapter.

Applying this equation using the data provided in the exercise leads to the
following results for the two cases: Case (a) maintains the 1990 TFP ratios, while
case (b) has TFP levels equalized across countries. The Ratio column reports the
ratio of these steady-state levels to the values in 1997.

ŷ97 (a) ŷ∗ Ratio (b) ŷ∗ Ratio

U.S.A. 1.000 1.000 1.000 1.000 1.000
Canada 0.864 1.030 1.193 1.001 1.159
Argentina 0.453 0.581 1.283 0.300 0.663
Thailand 0.233 0.554 2.378 0.259 1.112
Cameroon 0.048 0.273 5.696 0.064 1.334

The country furthest from its steady state will grow fastest. (Notice that by
furthest we mean in percentage terms). So in case (a), the countries are ranked by
their rates of growth, with Cameroon predicted to grow the fastest and the United
States predicted to grow the slowest. In case (b), Cameroon is still predicted to
grow the fastest while Argentina is predicted to grow the slowest.

Exercise 2. Policy reforms and growth.

The first thing to compute in this problem is the approximate slope of the re-
lationship in Figure 3.8. Eyeballing it, it appears that cutting output per worker in
half relative to its steady-state value raises growth over a 37-year period by about 2
percentage points. (Korea is about 6 percent growth, countries at the 1/2 level are
about 4 percent, and countries in their steady state are about 2 percent).
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a) Doubling A will cut the current value of y/A in half, pushing the economy
that begins in steady state to 1/2 its steady state value. According to the calculation
above, this should raise growth by something like 2 percentage points over the next
37 years.

b) Doubling the investment rate sK will raise the steady state level of output
per worker by a factor of 2α/(1−α) according to equation (3.8). If α = 1/3, then
this is equal to

√
2 ≈ 1.4. Therefore the ratio of current output per worker to

steady-state output per worker falls to 1/1.4 ≈ .70, i.e. to seventy percent of its
steady-state level. Dividing the gap between 1/2 and 1.0 into tenths, we are 3/5ths
of the way towards 1/2, so growth should rise by 3/5 ∗ (.02) = 1.2 percentage
points during the next 37 years.

c) Increasing u by 5 years of schooling will raise the steady state level of output
per worker by a factor of expψ ∗ 5 according to equation (3.8). If ψ = .10, then
this is equal to 1.65, and the ratio of current output per worker to steady-state
output per worker falls to 1/1.65 ≈ .60, i.e. to sixty percent of its steady-state
level. Dividing the gap between 1/2 and 1.0 into tenths, we are 4/5ths of the way
towards 1/2, so growth should rise by 4/5 ∗ (.02) = 1.6 percentage points during
the next 37 years.

Exercise 3. What are state variables?

Consider the production function

Y = Kα(AH)1−α.

Dividing both sides by AL yields

y

A
=

(
k

A

)α
h1−α.

Use the (̃ ) to denote the ratio of a variable to A and rewrite this equation as

ỹ = k̃αh1−α.

Now turn to the standard capital accumulation equation:

K̇ = sKY − dK.

Using the standard techniques, this equation can be rewritten in terms of the capital-
technology ratio as

˙̃
k = sK ỹ − (n+ g + d)k̃.
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In steady state, ˙̃
k = 0 so that

k̃ =
sK

n+ g + d
ỹ =

sK
n+ g + d

k̃αh1−α,

and therefore

k̃∗ =

(
sK

n+ g + d

) 1
1−α

h.

Substituting this into the production function ỹ = k̃αh1−α we get

ỹ∗ =

(
sK

n+ g + d

) α
1−α

hαh1−α =

(
sK

n+ g + d

) α
1−α

h.

Finally, note that ỹ = y/A, hence

y∗(t) =

(
sK

n+ g + d

) α
1−α

hA(t),

which is the same as the equation (3.8).

Exercise 4. Galton’s fallacy.

In the example of the heights of mother and daughter, it is true that tall mothers
tend to have shorter daughters and vice versa. Under the assumption of indepen-
dent, identical (uniform) distributions of the heights of mothers and daughters, we
have the following chart:

mother’s
height

5’1 5’2 5’3 5’4 5’5 5’6 5’7 5’8 5’9 5’10

probability of
shorter daughter

0 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

Mothers with height 5’1” have zero chance of having shorter daughters because no
one can be shorter than 5’1”. Mothers with height 5’2” have 1

10 chance of having
daughters with height 5’1”. Other cases can be reasoned in the same way.

In the above example, there is clearly no convergence or narrowing of the dis-
tribution of heights: there is always one very tall person and one very short person,
etc., in each generation. However, we just showed that in spite of the fact that the
heights of mothers and daughters have the same distribution (non-converging), we
still can observe the phenomenon that tall mothers tend to have shorter daughters,
and vice versa. Let the heights correspond to income levels, and consider observ-
ing income levels at two points in time. Galton’s fallacy implies that even though
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we observe that countries with lower initial income grow faster, this does not nec-
essarily mean that the world income distribution is narrowing or converging.

The figures in this chapter are not useless, but Galton’s fallacy suggests that
care must be taken in interpreting them. In particular, if one is curious about
whether or not countries are converging, then simply plotting growth rates against
initial income is clearly not enough. The figures in the chapter provide other types
of evidence. Figure 3.3, for example, plots per capita GDP for several different
industrialized economies from 1870 to 1994. The narrowing of the gaps between
advanced countries is evident in this figure. Similarly, the ratios in Figure 3.9 sug-
gest a lack of any narrowing in the distribution of income levels for the world as a
whole.

Exercise 5. Reconsidering the Baumol results.

As in Figure 3.3, William Baumol (1986) presented evidence of the narrow-
ing of the gaps between several industrialized economies from 1870. But De Long
(1988) argues that this effect is largely due to “selection bias”. First, only countries
that were rich at the end of the sample (i.e., in the 1980s) were included. To see
the problem with this selection, suppose that countries’ income levels were like
women’s heights in the previous exercise. That is, they are random numbers in
each period, say drawn with equal probability from 1,2,3,...,10. Suppose we look
only at countries with income levels greater than or equal to 6 in the second period.
Because of this randomness, knowing that a country is rich in the second period
implies nothing about its income in the first period — hence the distribution will
likely be “wider” in the first period than in the second, and we will see the appear-
ance of convergence even though in this simple experiment we know there is no
convergence. The omission of Argentina from Baumol’s data is a good example of
the problem. Argentina was rich in 1870 (say a relative income level of 8) but less
rich in 1987 (say a relative income level of 4). Because of its low income in the
last period, it is not part of the sample and this “divergent” observation is missing.

This criticism applies whenever countries are selected on the basis of the last
observation. What happens if countries are selected on the basis of being rich for
the first observation? The same argument suggests that there should be a bias to-
ward divergence. Therefore, to the extent that the OECD countries were already
rich in 1960, the OECD convergence result is even stronger evidence of conver-
gence.

For the evidence related to the world as a whole, there is clearly no selection
bias — all countries are included.

Exercise 6. The Mankiw-Romer-Weil (1992) model.
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From the Mankiw-Romer-Weil (1992) model, we have the production function:

Y = KαHβ(AL)1−α−β.

Divide both sides by AL to get

y

A
=

(
k

A

)α ( h
A

)β
.

Using the (̃ ) to denote the ratio of a variable to A, this equation can be rewritten as

ỹ = k̃αh̃β.

Now turn to the capital accumulation equation:

K̇ = sKY − dK.

As usual, this equation can be written to describe the evolution of k̃ as

˙̃
k = sK ỹ − (n+ g + d)k̃.

Similarly, we can obtain an equation describing the evolution of h̃ as

˙̃
h = sH ỹ − (n+ g + d)h̃.

In steady state, ˙̃
k = 0 and ˙̃

h = 0. Therefore,

k̃ =
sK

n+ g + d
ỹ,

and
h̃ =

sH
n+ g + d

ỹ.

Substituting this relationship back into the production function,

ỹ = k̃αh̃β =

(
sK

n+ g + d
ỹ

)α ( sH
n+ g + d

ỹ

)β
.

Solving this equation for ỹ yields the steady-state level

ỹ∗ =

{(
sK

n+ g + d

)α ( sH
n+ g + d

)β} 1
1−α−β

.
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Finally, we can write the equation in terms of output per worker as

y∗(t) =

{(
sK

n+ g + d

)α ( sH
n+ g + d

)β} 1
1−α−β

A(t).

Compare this expression with equation (3.8),

y∗(t) =

{
sK

n+ g + d

} α
1−α

hA(t).

In the special case β = 0, the solution of the Mankiw-Weil-Romer model is
different from equation (3.8) only by a constant h. Notice the symmetry in the
model between human capital and physical capital. In this model, human capital
is accumulated by foregoing consumption, just like physical capital. In the model
in the chapter, human capital is accumulated in a different fashion — by spending
time instead of output.



16

4 The Economics of Ideas

Exercise 1. Classifying goods.

Figure 10:

Rival Goods Nonrival Goods

Excludability

Degree of

 High

 Low

Chicken

   A Lighthouse?

Music from a 
    compact disc

Clean air?

Tropical rainforest

    Coca-Cola
Trade secret for

A chicken and a rainforest are clearly rivalrous — consumption of either by one
person reduces the amount available to another. Private goods like a chicken have
well-defined property rights which make them excludable to a very high degree.
For some rainforests, property rights appear to be less well-defined.

The trade secret for Coca-Cola is a nonrivalrous idea. Although not protected
by a patent, the good is protected by trade secrecy (although Pepsi and other soft
drinks do imitate the formula). Music from a compact disc is fundamentally a
collection of 0’s and 1’s and so is also nonrivalrous. The degree of excludability is
a function of the property rights system. Within the U.S. the enforcement appears
to be fairly strong, but this is less true in some other countries, where pirating of
compact discs is an issue.

The lighthouse (a tower flashing lights to provide guidance to ships at night)
is sometimes thought of as a public good. Notice that it is not truly nonrivalrous
— if a million ships wanted to use one lighthouse, there would be some crowding
effects. Excludability is, as always, a function of the markets in place. See the



17

next exercise for a discussion of this point by Ronald Coase (the 1991 Nobel Prize
winner in economics).

Similarly, clean air is not truly nonrivalrous. If I breathe a molecule of air,
then you cannot breathe the same molecule (at least at the same moment in time).
In terms of excludability, however, it is very difficult to monitor an individual’s
consumption of air and charge her for it.

Exercise 2. Provision of goods.

Chicken are rivalrous and highly excludable. The market does a good job of
providing chicken on a supply and demand basis.

The trade secret for Coca-Cola is nonrivalrous and partially excludable. One
might think that the disclosure of the trade secret would seriously weaken the com-
petitive position of Coca-Cola, but in practice, this doesn’t seem to be the case.
Other soft drinks, while not produced with exactly the same ingredients, are close
substitutes, yet Coca-Cola is a large and prosperous company. Similarly, the lack
of use of any official mechanism like patents to protect intellectual property rights
does not appear to be a serious problem in this industry — we see innovations like
diet soft drinks and New Coke.

Music from a compact disc is nonrivalrous and partially excludable (however,
the specific compact disc is rivalrous). Markets should provide music because there
is an incentive for profits in the music production business. However, once a com-
pact disc is produced, it is easy to replicate. Governments typically intervene to
protect intellectual property rights so that individuals can benefit from their mu-
sic talents and will have the incentives to produce better music. An interesting
issue is whether or not China should protect the intellectual property rights of U.S.
musicians.

A tropical rainforest is rivalrous but only partially excludable. For example,
the pollution that occurs when rainforests are burned is a serious externality on
neighbors (not always within the same country). Does the owner of the land have
the right to burn it and pollute the neighbor’s air, or does the neighbor have the right
to clean air on his property? If these rights are well-defined, then the Coase theorem
suggests that negotiation might achieve the efficient outcome. In the absence of
well-defined property rights on this issue, some government involvement may be
necessary. Other issues related to tropical rainforests also arise, such as biodiversity
and global warming.

Similar issues apply to clean air more generally.

The lighthouse has been used (by Mill, Pigou, Samuelson, and others) as a
classic example of a public good that should be provided by the government. The
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claim is that it is impossible to charge passing ships for their use of the lighthouse
and that the marginal cost of allowing one more ship to pass is zero.

Ronald Coase in “The Lighthouse in Economics” (Journal of Law and Eco-
nomics, October 1974:357-376) provides an excellent discussion of the history of
lighthouses as an example of a public good in economics. Coase shows that in fact
lighthouses in Britain in the 17th and 18th centuries were often very successfully
provided by the private market system in conjunction with patents granted by the
government. Individuals would apply to the government for authorization to build
and maintain a lighthouse in exchange for the right to charge any ship that docked
in nearby ports a specified fee (based on the size of the ship, etc.).

Exercise 3. Pricing with increasing returns to scale.

a) C = wL = w( 5
100 + F )

b) C(Y ) = w( Y
100 + F )

c) dC
dY = w

100

d) C
Y = w

100 + F
Y w,

d(C/Y )
dY < 0,

e) π = PY − C(Y ) = w
100Y − w( Y

100 + F ) = −wF < 0.
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5 The Engine of Growth

Exercise 1. An increase in the productivity of research.

Figure 11: An Increase in δ

LAΑ/Α=δ /A

Α/Α=δ

LA /A

A/A
.

g A =n

g A / g A / δδ ’

’ LA /A
.

.

Figure 12: The Growth Rate of Technology

TIME

A/A
.

n

t=0

As shown in Figures 11 and 12, an increase in δ causes a temporary increase in
the growth rate of technology: at the initial level ofLA, research is more productive
and the economy produces more ideas. Over time, the growth rate falls as LA

A
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Figure 13: The Level of Technology

}Level
effect

LOG A

TIMEt=0

decreases when Ȧ
A > n. In the long run, the growth rate of technology returns to

n. The long-run level effect of an increase in δ is shown in Figure 13.

Exercise 2. Too much of a good thing?

Solution.
From equation (5.11), we have

y∗(t) =

(
sK

n+ gA + d

) α
1−α

(1 − sR)
δ sR
gA

L(t).

To maximize output per worker along a balanced growth path, take the derivative
with respect to sR:

∂ y∗(t)

∂ sR
= B

∂ (1 − sR)sR
∂ sR

,

where

B =

(
sK

n+ gA + d

) α
1−α δL(t)

gA
.

The maximum occurs when this derivative is equal to zero, and ∂ y∗(t)
∂ sR

= 0
implies that

1 − 2s∗R = 0,

and therefore

s∗R =
1

2
.
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Notice that the first time sR appears, it enters negatively to reflect the fact
that more researchers mean fewer workers producing output. The second time, it
enters positively to reflect the fact that more researchers mean more ideas, which
increases the productivity of the economy. s∗R = 1

2 achieves the balance between
these two effects. If s∗R > 1

2 , the negative effect of more researchers overpowers
the positive effect. As a result, we can have too much of a good thing.

Exercise 3. The future of economic growth.

a) From equation (5.6), we have

0 = λ
L̇A
LA

− (1 − φ)
Ȧ

A
,

which implies that
λ

1 − φ
=
Ȧ

A
/
L̇A
LA

=
2

3
.

b) From equation (5.7), we have

gA =
λn

1 − φ
.

Assuming λ
1−φ in the world economy is the same as that calculated from the ad-

vanced countries, we get

gA =
2

3
× .01 =

2

3
= .0067.

The long-run steady-state growth rate of the per capita output in the world economy
is also equal to this value.

c) gy is different from Ȧ
A given in the question because L̇A

LA
is substantially

higher than population growth. This means that the advanced countries are in tran-
sition stage where LA/L is rising in the data. gy is the long-run steady-state growth

rate, while the current level of Ȧ
A is reflects transition dynamics. The implication

is that, holding everything else constant, growth rates may decline substantially in
the future.

d) The fact that many developing countries are starting to engage in R&D sug-
gests that the decline in the growth in LA may not occur for a long time. The
decline in growth suggested by part (c) may therefore be postponed for some time.

Exercise 4. The share of the surplus appropriated by inventors.
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Denote Π as the profit captured by the monopolist. The monopolist chooses
the price P to maximize Π, where

Π = (P −MC)Q(P ) = (P − c)(a− bP ).

Setting ∂Π/∂P = 0 yields the first-order condition:

a− bP − b(P − c) = 0.

Solving for P , we find the monopolist chooses a price of

P ∗ =
a+ bc

2b

and earns profits

Π∗ =

(
a+ bc

2b
− c

)(
a− a+ bc

2

)

=

(
a− bc

2b

)(
a− bc

2

)

=
1

4b
(a− bc)2.

The potential consumer surplus,CS, is the area of the shaded triangle in Figure
5.4:

CS =
1

2
(
a

b
−MC)(a− bMC) =

1

2b
(a− bc)2.

Therefore, the ratio of profit to consumer surplus is 1/2.
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6 A Simple Model of Growth and Development

Exercise 1. The importance of A versus h in producing human capital.

Equation (6.8) can be rewritten to isolate the effect of schooling as

y∗(t) = Z(t)e
ψ
γ
u
, (1)

where Z is the collection of all of the other terms (e.g. the one involving the
physical investment rate and the A∗(t) term).

This can be compared to the model in Chapter 3, where equation (3.8) and the
fact that h = eψu in that chapter imply

y∗(t) = Z3(t)e
ψu,

where Z3 represents some other terms from Chapter 3, similar to those that make
up Z above.

In Chapter 3, we used a fact documented by Mincer (1974) and many other
labor economists that an additional year of schooling — u — tends to generate
proportional effects on the wage, and therefore on output per worker. In particu-
lar, the labor market evidence from a wide range of countries suggests that a one
year difference in schooling translates into about a ten percent difference in wages.
Since the wage is proportional to output per worker (recall that the marginal prod-
uct of labor in this model is (1−α)Y/L), this leads us to choose a value of .10 for
ψ in Chapter 3:

∂ log y

∂u
= ψ = .10.

Recall that the derivative of a log is like a percentage change, so this expression
can be written as

%∆y

∆u
= ψ = .10,

i.e. a one unit change in u leads to a 10 percent change in y.

If we apply this same logic to equation (1) above, we see an interesting result:

∂ log y

∂u
= ψ/γ.

That is, in the model in Chapter 6, a one unit change in u raises output per person
— and hence the wage — by ψ/γ units. If we apply the same reasoning as above,
this would suggest picking parameter values such that ψ/γ = .10. This allows our
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model to match the labor market evidence that one additional year of schooling
raises the typical wage by 10 percent. What this means is that even though we’ve
added a new parameter to the model, differences in schooling in the calibrated
model (i.e. the model once we’ve picked values for the parameters) will have
exactly the same effect on output per worker as in Chapter 3. For this conclusion,
we don’t need to say anything in particular about γ. All that matters is the ratio
ψ/γ.

The parameter γ has important effects on the transition dynamics of the model.
For example, in equation (6.5), γ determines how rapidly skill accumulation occurs
in a country as a function of how far the country is from the world’s knowledge
frontier (h/A). One might try to use evidence on transition dynamics to determine
this value.

Exercise 2. Understanding differences in income.

This model explains differences in the level of income across countries by ap-
pealing to differences in sK and u. However, this explanation begs new questions:
Why is it that some countries invest more than others and why do individuals in
some countries spend more time learning to use new technologies? This model can-
not address these questions. In addition, we know from Chapter 3 that differences
in sK and u will not explain entirely the differences in incomes across countries.
Recall that differences in productivity were also needed, and the theory in Chapter
6 does not help us to understand why countries have different productivity levels.

Exercise 3. Understanding differences in growth rates.

A key implication of the model is that all countries share the same long-run
growth rates, given by the rate at which the world technological frontier expands.
Even with no differences across countries in the long-run growth rate, we can ex-
plain the large variation in rates of growth with transition dynamics. To the extent
that countries are changing their positions within the long-run income distribution,
they can grow at different rates. It is natural in this model to suspect that countries
that are below their steady-state balanced growth paths should grow faster than
g, and countries that are above their steady-state growth paths should grow more
slowly. Changes in policy can cause an economy to be away from its steady state.
[One must be careful in defining distance from steady state in this model since
the transition dynamics now involve two dimensions (corresponding to physical
capital and human capital.)

Exercise 4. The role of µ.
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Figure 14: Steady-state A/h ratio
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The equation below is true in this model:

(
h

A

)
∗

=

(
µ

g
eψu

) 1
γ

.

To be sure that the ratio h
A is less than one, we must have

(
µ

g
eψu

) 1
γ

< 1,

which implies
µ < g e−ψu.

Therefore, we require this condition to hold for the largest possible value of u.

In the model, the parameter µ can be interpreted as the productivity of the
economy at using education to learn to use new ideas. A very good educational
system, for example, might be reflected by a higher value of µ. Or, as the next
question discusses, it might reflect the openness of the economy to technology
transfer.

Exercise 5. An increase in µ.

a) Figure 14 shows the experiment. The line ḣ
h = µ eψu

(
A
h

)
says that the

growth rate of accumulated skills is proportional to the ratio of A to h, which is
the closeness between current skill and the knowledge frontier. The line ḣ

h = g
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Figure 15: h/A Over Time

t=0 TIME

Ah/

(h/A)*

(h/A)**

shows the growth rate of accumulated skills in steady state. The intersection point
of these two lines denotes the steady-state value of the A

h ratio.

b) Starting from the steady state, an increase in µ causes the growth rate of h to
be higher than g. In the intermediate run, h grows faster thanA, hence A

h decreases
over time until the growth rate of h returns back to g. An increase in µ has a level
effect on the ratio of A

h , but no long-run growth effect.

c) The behavior of h/A over time is graphed in Figure 15.

d) The behavior of h(t) over time is graphed in Figure 16.

e) An increase in µ can be understood as an increase in the openness of the
economy to technology transfers. As illustrated above, an increase in the openness
of the economy can shrink the distance between steady-state skill and the frontier
technology, thus raising a country’s steady-state income.
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Figure 16: h(t) Over Time
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7 Social Infrastructure and Long-run Economic Perfor-
mance

Exercise 1. Cost-benefit analysis.

Solution
a) F = $1000,

Π = 100
(1+r)(1 + 1

(1+r) + · · ·) = 100
r = 2000,

Π > F, so the investment is worth undertaking.

b) F = 5000.

Π < F , so the investment is not worth undertaking.

c) The cutoff value is $2000.

Exercise 2. Can differences in the utilization of factors of production explain
differences in TFP?

a) For this problem, think of all variables as denoting ratios of the value in
the most productive country to the value in the least productive country. With this
notation, I = 10. If m denotes the fraction of K that is utilized, then

Y = (mK)α(hL)1−α = mαKα(hL)(1−α).

Therefore,
I = mα,

and
m = I

1
α = 103.

Under this assumption we need the utilization of capital to vary by a factor of
1000 to explain the variation in TFP. This means that if one country utilizes all
of its physical capital, another country only utilizes 1/1000th, which seems quite
unlikely.

b) Suppose the utilization of both physical capital and skills vary in the same
way across countries. Then

Y = (mK)α(mhL)1−α = mKα(hL)1−α.

Then,
I = m1,
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and
m = I = 10.

Under this assumption, we need a factor of 10 variation in the utilization of both
factors. Note that it is important that this variation be perfectly correlated across
countries.

c) These calculations suggest that it is unlikely that differences in utilization of
physical capital across countries can account fully for differences in productivity.
Differences in the utilization of factor inputs have stronger explanatory power if
variations in the utilization of skills are introduced, but it still seems unlikely that
this is the complete explanation. Another possible explanation is differences in the
technologies used in different countries (which could also be due to differences in
infrastructure).

Exercise 3. Social infrastructure and the investment rate.

a) Suppose a country’s investment rate is chosen by international investors
who equate rates of return across countries. With this production function, the
marginal product of capital is equal to αY/K, so that equating the marginal prod-
uct of capital across countries is the same as equating the capital-output ratio. Re-
call that the capital-output ratio in steady state is given by s/(n+ g+ d), so that if
marginal products of capital are equated, then investment rates differ across coun-
tries only to the extent that n + g + d differs. In particular, differences in I do
not matter for rates of investment in this scenario. They do affect the capital-labor
ratio, however, as can be seen by noting that the marginal product of capital can
also be written as αI(K/L)α−1.

b) One suspects that differences in institutions and government policies —
infrastructure — show up in part as differences in tax rates or rates of expropria-
tion (e.g. when a private industry is nationalized with little or no compensation to
owners). In this case, it is the after-tax rate of return that would likely be equalized
across countries by international investors. Let τ denote the effective tax rate on
capital income, so that investors receive (1− τ) times the marginal product of cap-
ital. In this case, (1− τ)αY/K is equalized across countries, and by the argument
given above, differences in τ will lead to differences in investment rates across
countries.

Exercise 4. The meaning of the quotation.

Firms and individuals will do the best they can given the constraints that face
them. One of the fundamental theorems of economics, observed early on by Adam
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Smith, is that such self-interested behavior will, under certain circumstances, max-
imize the welfare of society as a whole. However, such circumstances may not
always hold. For example, profit-maximizing firms may do their best to monopo-
lize a market, which may restrict competition and reduce welfare. Or, individuals
may try to circumvent poorly defined property rights in order to enhance their own
welfare at the expense of others. But if such property rights are easily circum-
vented, everyone may be worse off.

The quotation also notes that innovation and profit may not always be the same
thing. Clearly, the incentives to innovate may be reduced by individuals seeking to
circumvent property rights.



31

8 Alternative Theories of Endogenous Growth

Exercise 1. Population growth in the AK model.

a) Y = AKL1−α. Substitute this into the standard capital accumulation
equation:

K̇ = sY − dK ⇒ K̇

K
= sAL1−α − d.

Taking logs and derivatives of the production function:

Ẏ

Y
=
Ȧ

A
+
K̇

K
+ (1 − α)

L̇

L
.

In this model, A is some constant, so,

Ẏ

Y
=
K̇

K
+ (1 − α)

L̇

L
= sAL1−α − d+ (1 − α)n.

The growth rate of output is an increasing function of L.

b) If L is growing at some constant rate n then the growth rate of output itself
is growing at (approximately) an exponential rate. Empirically, we do not see this
occuring.

c) Consider a standard production function,

Y = BKαL1−α.

Suppose that the accumulation of capital generates new knowledge about produc-
tion in the economy as a whole, while the utilization of labor produces negative
externality. Specifically assume that

B = AK1−αLα−1 = Ak1−α,

where A is some constant.

Substituting this equation into the production function, we get

Y = AK.

As a result, even if n > 0,

Ẏ

Y
= sA− d.
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and output growth is constant rather than growing.

d) Labor affects production in a), but not in c). The reason is that we have
specified the externality in terms of the capital-labor ratio instead of in terms of the
aggregate capital stock: increases in labor will tend to raise the “private” part of
output, but they reduce B in an external fashion in a way that leaves total output
unchanged. According to this production function, if the economy doubles its stock
of labor, aggregate output is unchanged.

What we see from this exercise is that in this model, in order for changes in la-
bor to affect output (as seems plausible), output growth must itself grow over time
with population. This seems counterfactual. On the other hand, to eliminate this
result, we must eliminate the effect of labor on output, which also seems implau-
sible. This is one reason why economists studying growth have moved on to more
sophisticated models.

Exercise 2. A permanent increase in sK in the Lucas model.

A permanent increase in sK has a level effect, but not a growth effect. To see
the reason, remember that in the Lucas model, h enters the production function of
the economy just like labor-augmenting technological change in the original Solow
model. So the standard results of the Solow model apply here. The steady-state
growth rate is determined by time spent accumulating skill. sK has no long-run
growth effect.

Exercise 3. Market structure in the Lucas model

We saw in this chapter that imperfect competition and/or externalities are ap-
pealed to whenever a growth model exhibits increasing returns to scale. So this
question is really about whether or not the Lucas model exhibits increasing returns.

The production function for output in the Lucas model is

Y = Kα(hL)1−α.

There are constant returns to K and L. Therefore, it would appear that there are
increasing returns to K, L, and h taken together. However, this turns out to be a
misleading way of viewing the model. The reason is that the h is embodied in L,
so that these are not really two separate inputs. For example, if we were to write
the production function as Y = KαH1−α, with H = hL, then there are constant
returns to K and H .

Lucas (1988) thinks of firms that hire capitalK and workersLwith skill level h
who get paid a wage that is a function of their skill level. These firms are perfectly
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competitive, and, at least in the setup described here, there is no need for any
externalities.

Exercise 4. Growth over the very long run.

Idea-based endogenous growth models suggest that growth is the endogenous
outcome of an economy in which profit-seeking individuals who are allowed to
earn rents on the fruits of their labors search for newer and better ideas. This story
has strong explanatory power for the historical evidence.

The Industrial Revolution — the beginning of sustained economic growth —
occurred when the institutions protecting intellectual property rights were suffi-
ciently well-developed that entrepreneurs could capture as a private return some
of the enormous social returns their innovations would create. While government
incentives such as prizes or public funding could substitute for these market incen-
tives in certain cases, history suggests that it is only when the market incentives
were sufficient that widespread innovation and growth took hold.

Other models also contribute in other ways to this understanding. Learning by
doing models appropriately suggest that experience in production is an important
factor in increasing productivity. The acceleration of growth rates over much of
world history is potentially consistent with a large number of models, including
the “AK” model discussed in the first exercise in this chapter, the Romer (1990)
endogenous growth model, and the semi-endogenous growth version of that model
in which per capita growth is proportional to population growth (recall from Figure
4.4 that population growth rates have also accelerated over time).

Exercise 5. The idea production function.

The production function is

Ȧ = δLAA
φ.

An economic justification for this structure is

1. Both research labor and accumulated knowledge contribute to the production
of new ideas.

2. LA enters linearly to capture constant returns to rivalrous inputs: to double
the number of ideas produced at any point in time, we simply set up another
research lab with the same number of workers. This neglects any duplication
that might occur.
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3. φ > 0 reflects a positive knowledge spillover in research. The stock of ideas
is a nonrivalrous input into the production of new ideas.

It is this last feature that suggests that increasing returns might apply to the produc-
tion of new ideas, particularly if there is no congestion effect in research (related
to point 2).
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9 Natural Resources and Economic Growth

Exercise 1. Transition dynamics in the land model.

Define z ≡ K/Y =
(
BKα−1T βL1−α−β

)
−1

. Taking logs and derivatives,
we have

ż

z
= −

(
gB + (α− 1)

K̇

K
+ (1 − α− β)n

)
. (2)

From the capital accumulation equation and the definition of z, we also have

K̇

K
=
s

z
− d. (3)

Substituting this second equation into the first and rearranging terms gives

ż

z
= (1 − α)

s

z
− φ, (4)

where φ ≡ (1−α− β)n+ gB + (1−α)d is a constant. Multiplying both sides by
z, we have a linear differential equation that is easy to analyze:

ż = (1 − α)s− φz. (5)

The steady state occurs when ż = 0, so that the capital-output ratio in steady
state is given by z∗ = (1−α)s

φ . To analyze the transition dynamics, we can look
at either equation (5) or equation (4). It turns out to be more convenient to look
at the differential equation involving the growth rate of z, so we will focus on
equation (4). The stability of the system and the fact that the growth rate of the
capital-output ratio declines (or rises) smoothly over time is apparent from Fig-
ure 17. Notice that this figure can be analyzed just like the growth version of the
Solow diagram in Chapter 2.

Exercise 2. Transition dynamics in the energy model.

This problem is solved just like the first exercise. Define z ≡ K/Y =
(
BKα−1EγL1−α−γ

)
−1

. Taking logs and derivatives, we have

ż

z
= −

(
gB + (α− 1)

K̇

K
+ γ

Ė

E
+ (1 − α− γ)n

)
. (6)
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Figure 17: The Dynamics of z ≡ K/Y in the Land Model
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From the capital accumulation equation and the definition of z, we also have

K̇

K
=
s

z
− d. (7)

Substituting this second equation into the first, noting that Ė/E = −sE , and
rearranging terms gives

ż

z
= (1 − α)

s

z
− φ, (8)

where φ ≡ (1 − α − γ)n + gB − γsE + (1 − α)d is a constant, which will be
positive as long as γsE is not too large (which we assume). Multiplying both sides
by z, we have a linear differential equation that is easy to analyze:

ż = (1 − α)s− φz. (9)

The steady state occurs when ż = 0, so that the capital-output ratio in steady
state is given by z∗ = (1−α)s

φ . To analyze the transition dynamics, we can look
at either equation (9) or equation (8). It turns out to be more convenient to look
at the differential equation involving the growth rate of z, so we will focus on
equation (8). The stability of the system and the fact that the growth rate of the
capital-output ratio declines (or rises) smoothly over time is apparent from Fig-
ure 18. Notice that this figure can be analyzed just like the growth version of the
Solow diagram in Chapter 2.
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Figure 18: The Dynamics of z ≡ K/Y in the Energy Model
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Exercise 3. A model with land and energy.

Using the same procedure as in the previous two questions, it is easy to show
that the capital-output ratio will be constant along a balanced growth path. Given
this fact, we can derive the steady state growth rate for output per worker as follows:

Y = BKαT β(sER0e
−sEt)γL1−α−β−γ

⇒ Y 1−α = B(
K

Y
)αT β(sER0e

−sEt)γL1−α−β−γ

⇒ (
Y

L
)1−α = B(

K

Y
)αT β(sER0e

−sEt)γL−β−γ

⇒ Y

L
= B

1
1−α (

K

Y
)

α
1−αT

β
1−α (sER0e

−sEt)
γ

1−αL
β+γ
α−1

Taking logs and derivatives of this last equation (and using the facts that the capital-
output is constant in a steady state and that T and sE do not vary with time), we
obtain:

gy =
1

1 − α
gB − γ

1 − α
sE − β + γ

1 − α
n

=
1

1 − α
[gB − γsE − (β + γ)n]
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Exercise 4. Optimal extraction rate.

Define y ≡ Y
L . Given that the capital-output ratio is constant, equation 9.17

holds and we know that

y(t) = y0e
[g−γ̄(sE+n)]t = B0K

α
0 (sER0)

γL−α−γ
0 e[g−γ̄(sE+n)]t,

whereB0,K0, R0, andL0 are the time zero values ofB,K,R, andK, respectively.
This implies that the present discounted value (PDV ) of output per worker is given
by

PDV = B0K
α
0 (sER0)

γL−α−γ
0

∫
∞

0
e[g−γ̄(sE+n)−r]tdt

= B0K
α
0 (sER0)

γL−α−γ
0 [

e[g−γ̄(sE+n)−r]t

g − γ̄(sE + n) − r
]∞0

If r ≥ g − γ̄(sE + n), then limt→∞[ e
[g−γ̄(sE+n)−r]t

g−γ̄(sE+n)−r ] exists and the integral is
well-defined. If this is not the case, then we do not have a well-defined maximiza-
tion problem, so let us assume that r ≥ g − γ̄(sE + n) holds. In this case,

PDV =
B0K

α
0 (sER0)

γL−α−γ
0

r + γ̄(sE + n) − g
.

Our task is to find the value of sE , s∗E , that maximizes PDV . Noting that PDV is
a concave function of sE over the relevant range, we can find s∗E by equating the
derivative of PDV with respect to sE equal to zero and solving for sE :

∂PDV

∂sE
= γsα−1

E B0K
α
0 R

γ
0L

−α−γ
0 [r + γ̄(sE + n) − g]−1 − γ̄[r + γ̄(sE + n) − g]−2

B0K
α
0 (sER0)

γL−α−γ
0

= 0

⇒ s∗E =
(1 − α)(r + γ̄n− g)

1 − γ

Several interesting interpretations arise. As r increases, future consumption
has less present value, so optimizing requires using a greater proportion of non-
renewable resources at any given time. As the relative importance of non-renewable
resources in production increases (as γ increases), s∗E increases. This effect is com-
pounded by an increase in the population growth rate, n. As population growth
becomes faster, optimizing requires that a greater proportion of non-renewable re-
sources be used at every point in time. Finally, as technological progress acceler-
ates (gB increases), it becomes optimal to preserve more non-renewable resources
for future use, when they will be more productive relative to the present.
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Exercise 5. Solving for τ .

Equation (9.20) implies that

[
e(.018−r)t

.018 − r
]∞0 = (1 − τ)[

e(.021−r)t

.021 − r
]∞0

⇒ τ =
[ e

(.021−r)t

.021−r ]∞0 − [ e
(.018−r)t

.018−r ]∞0

[ e
(.021−r)t

.021−r ]∞0

= 1 −
[ e

(.018−r)t

.018−r ]∞0

[ e
(.021−r)t

.021−r ]∞0

= 1 − r − .021

r − .018
if r > .021

Using the above formula, we can now calculate values of τ for r = .04 and r = .08:

τ.04 ≈ .1364

τ.08 ≈ .0484

Notice that as r increases, the representative person is less patient and willing
to give up less of her income in exchange for faster income growth.

Exercise 6. Robustness of the growth-drag calculations.

(Assume that all values, save those for β and γ, are the same as in the text.)

Case a) β = .05, γ = .05

Growth Drag = (β̄+γ̄)n+γ̄sE = (.05/.8+.05/.8).01+(.05/.8).005 =.0015625.

Note that r = .06 ≥ .0195625 (see Problem 5). Thus,

τ = 1 − .06 − .0195625

.06 − .018
= .037202381 .

Case b) β = .05, γ = .02

Growth Drag = (β̄ + γ̄)n+ γ̄sE = (.05/.8 + .02/.8).01 + (.02/.8).005 =.001.
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Given r = .06 ≥ .019,

τ = 1 − .06 − .019

.06 − .018
= .0238095238 .

So it appears that the magnitudes of our results depend crucially on what we
assume about the shares of land and energy. However, the qualitative point that the
presence of natural resources in production slows growth in a non-trivial fashion
still holds even under lowered estimates of β and γ.

Exercise 7. A changing land share.

(a) Y = YA + YM = T β(ALA)1−β + ALM = T β(AsL)1−β + A(1 − s)L .

(b) Our problem is:
max
s
T β(AsL)1−β + A(1 − s)L,

where the maximization is subject to 0 ≤ s ≤ 1 . Taking the derivative of our
objective function with respect to s and setting this equal to zero gives us the first
order condition (notice that the second order condition for maximization, namely
that the second derivative of our objective is less than zero, is satisfied):

(1 − β)ALT β(AsL)−β − AL = 0

⇒ (1 − β)T β(AsL)−β = 1

⇒ s∗ =
T

AL
(1 − β)

1
β .

(c) As A and L increase, s∗ decreases. That is, as A and L increase, the diminish-
ing returns in agriculture associated with the fixed supply of land set in. Therefore,
the optimal allocation involves shifting labor out of agriculture and toward manu-
facturing (which does not use land).

(d) If the price of land is given by its marginal product, then

PT = βT β−1(AsL)1−β .
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Now we have
PTT

Y
=

βT β(AsL)1−β

T β(AsL)1−β + A(1 − s)L
.

Since 0 ≤ β ≤ 1, PT T
Y decreases as A and L increase. The land share of pro-

duction declines over time as diminishing returns set in and labor is shifted into
manufacturing.

Exercise 8. Energy’s share in a CES production function.

(a) Consider what happens if we increase all factors of production by a factor of N
(N = 2 if we double all inputs):

F (NK,NE,NL) = [(NK)ρ + (BNE)ρ]
α
ρ (ANL)1−α

= [NρKρ +Nρ(BE)ρ]
α
ρN1−α(AL)1−α

= Nα[Kρ + (BE)ρ]
α
ρN1−α(AL)1−α

= N [Kρ + (BE)ρ]
α
ρ (AL)1−α

= NF (K,E,L)

Thus, if we double all inputs, output doubles, i.e. this production function exhibits
constant returns to scale.

(b) The factor shares for K, L, and E are given by PKK
Y , PLLY , and PEE

Y , respec-
tively. Given that factors are paid their marginal products, we have:

PK =
α

ρ
ρKρ−1[Kρ + (BE)ρ]

α−ρ
ρ (AL)1−α

PE = αBρEρ−1[Kρ + (BE)ρ]
α−ρ
ρ (AL)1−α

PL = (1 − α)A1−αL−α[Kρ + (BE)ρ]
α
ρ

Therefore,

PKK

Y
= αKρ[Kρ + (BE)ρ]−1

PEE

Y
= α(BE)ρ[Kρ + (BE)ρ]−1

PLL

Y
= 1 − α

Notice that while labor’s share is equivalent to the Cobb-Douglas case, the factor
shares for capital and energy now depend on how much capital and energy are
employed.
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(c) With ρ < 0, as B increases, PKKY increases, PEEY decreases, and PLL
Y is un-

affected. The declining energy share is offset by a rising share of income paid to
capital.

10 Natural Resources and Economic Growth

No problems.
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A Mathematical Review

Exercise 1

a) ẏy = ẋ
x = 0.05e0.05t

e0.05t
= 0.05,

b) ẏy = ż
z = 0.01e0.01t

e0.01t
= 0.01,

c) ẏy = ẋ
x + ż

z = 0.06,

d) ẏy = ẋ
x − ż

z = 0.04,

e) ẏy = β ẋx + (1 − β) żz = 1
2 × 0.05 + 1

2 × 0.01 = 0.03,

f) ẏ
y = β ẋx − β ż

z = 1
3 × 0.05 − 1

3 × 0.01 = .01333.

Exercise 2
a) ẏy = β k̇

k ,

b) ẏy = k̇
k − ṁ

m ,

c) ẏy = β ( k̇k + l̇
l + ṁ

m),

d) ẏy = β ( k̇k + l̇
l ) − (1 − β) ṁm .

Exercise 3

We are told that ẋx = 0.1. Now integrate both sides of this equation,

∫
d log x(t) =

∫
0.1dt,

which implies that
log x(t) = 0.10 t+ C.

Given x(0) = 2,
x(t) = 2 e0.1t.

By the same reasoning,
z(t) = e0.02t.

a) y(t) = x(t) z(t),

b) y(t) = z(t) /x(t) ,
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t x(t) z(t) y = xz y = z/x

0 2.000 1.000 2.000 0.500
1 2.210 1.020 2.254 0.462
2 2.443 1.041 2.543 0.426

10 5.437 1.221 6.639 0.225

c) y = xβz(1−β), where β = 1
3

t xβ z(1−β) xβz(1−β)

0 1.260 1.000 1.260
1 1.303 1.013 1.320
2 1.347 1.027 1.383

10 1.758 1.142 2.008

Exercise 4

Note: ŷ represents GDP per worker relative to the U.S.A. Plain y denotes the
actual level of GDP per worker. Table B.2 informs us that yU.S.(97) = 40834 and
yU.S.(60) = 24433. Therefore, the growth rate for the U.S. is

gUSy = 1/37 ∗ (log(40834) − log(24433)) = .0139.

The growth rate for other countries can be calculated by converting their rela-
tive GDPs into absolute levels of GDP, or by calculating directly as

giy = giŷ + .0139.

Country ŷ(60) ŷ(97) y(60) y(97) g(60, 97)

U.S. 1.00 1.00 24433 40834 0.0139
Canada 0.80 0.86 19484 35267 0.0160
Argentina 0.46 0.45 11339 18485 0.0132
Chad 0.08 0.03 1927 1128 -0.0145
Brazil 0.23 0.30 5549 12153 0.0212
Thailand 0.08 0.23 1884 9505 0.0437

Notice that these numbers differ from those at the back of the book because of
rounding errors (the relative income numbers are not very precise — especially for
a country like Chad or Thailand where there is only one significant digit).
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Exercise 5

Denote the annual growth rate of GDP as gY and the labor force growth rate as
n. Then

gY (60, 97) = g(60, 97) + n.

Country g(60, 97) n gY (60, 97)

U.S. 0.0139 0.0096 0.0235
Canada 0.0160 0.0122 0.0283
Argentina 0.0132 0.0141 0.0273
Chad -0.0145 0.0276 0.0131
Brazil 0.0212 0.0174 0.0386
Thailand 0.0437 0.0153 0.0590

Note: We are making an error here in that we are using the population growth
rate between 1980 and 1997 instead of 1960 and 1997.

Note that the population growth rate and labor force growth rate usually are not
the same because of changes in labor force participation rates. These may take the
form of retirements, new entry because of a baby boom, and shifts from nonmarket
to market work, among many other reasons.

Exercise 6

Figure 19: GDP per Worker and Years of Schooling
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