* Exercise 1 & 2 * how to set mem in STATA? set mem 100m * setting working directory in STATA cd"C:\Users\dtrifunovic\Desktop\STATA\Dragana vezbe" *uploading data from csv in STATA insheet using "C:\Users\dtrifunovic\Desktop\STATA\Data\data.csv" ****** * Generating practice in STATA gen var1=1 * change var1 in zero if person is selfemployed. replace var1=0 if selfemp==2 * labeling variables in STATA for graphs and tables label var var1 "Pass Final Exam" * labeling variables in Indian data label var educat "Education Level" label var totwage "Wage per week" label var exper "Experience" label var marst "Marital Status" * value names for numbers 0 "Fail" and 1 "Pass" label def dummy 1 "Pass" 0 "Fail" label val var1 dummy * how to drop variables in STATA? drop var1 * introduction to data / summarizing data sum totwage exper educat sex marst * getting to know data a bit better sum totwage exper educat sex marst, detail * getting to know data even better :) tab totwage tab educat tab marst * Graphs in STATA twoway histogram totwage, bin(15) twoway histogram totwage, bin(55) twoway scatter totwage educat * graphs with labeled variables twoway scatter var1 educat

* graphs of wage with independent variables * 1. wage and education twoway scatter totwage educat * 2. wage and experience twoway scatter totwage exper * 3. wage and sex twoway scatter totwage sex * 4. wage and marital status twoway scatter totwage marst * 5. age and experience twoway scatter age exper **** Exercise 3 * Dropping extremes * Wage per week drop if totwage>8000 * inspecting variable experience twoway histogram exper, bin(55) * dropping extreme values of experience drop if exper>65 * examining correlations ** wage and experience corr totwage exper ** wage and education pwcorr totwage educat, sig * tab with two variables tab totwage tab marst * tab with two variables tab marst educat tab marst sex tab sex ***** Exercise 4 *** When starting stata always set the memory, working directory and **** withdraw the data (from beginning of the file) * repeating the graphs * 2. wage and experience

twoway scatter totwage exper

** repeating exclusions of extremes drop if totwage>8000 ** repeat tab command tab marst tab marst sex ** repeat correlation between variables pwcorr totwage educat, sig ** when we need more explenation about the command we use help help drop *** how to do correlation in STATA? help correlation *** Wage model ** choosing variables *** totwage educat exper marst sex age * for start we summarize sum totwage educat exper marst sex age ** econometric model *** regression analysis I reg totwage educat exper marst sex age *** corrections of the wage model * 1) change the wage to log wage gen logtotwage=log(totwage) sum logtotwage * 2) insepct age and experience * 5. age and experience twoway scatter age exper *** as a result of perfect correlation we exclude age from the model. *** regression analysis II reg logtotwage educat exper marst sex * quadratic variables *** how experience affects wage twoway scatter totwage exper *** regression analysis III **** including experience square - concave shape * creating exper square gen exper2=exper^2 * regression with new variable exper2

reg logtotwage educat exper exper2 marst sex

***** Exercise 5 *** after set memory, directory and uploading data, we gen logs and drop extremes gen logtotwage=log(totwage) gen exper2=exper^2 drop if totwage>8000 *** working with dummy variables **** generate - rename : male dummy rename sex male *** generate female dummy gen female = male == 0 *** generate married dummy gen married = marst == 1 *** regression analysis IV reg logtotwage educat exper exper2 male married reg logtotwage educat exper exper2 female married *** standard errors and concept of homoscedasticity reg logtotwage educat exper exper2 male married, vce (robust) reg logtotwage educat exper exper2 male married, cluster (state) *** comparing results for different groups rename male sex **** two tables in STATA by gender sort sex by sex: reg logtotwage educat exper exper2 married, cluster (state) *** storing tables and printing tables **** command guietly runs regression without output quietly reg logtotwage educat exper exper2 married if sex==1 *** saving the results estimates store men quietly reg logtotwage educat exper exper2 married if sex==0 *** saving the results estimates store women *** put the results in tables estimates table men women *** put the results in tables with standard errors estimates table men women, b(%5.3f) se(%5.3f) t(%5.3f) *** how to copy tables in word **** copy paste text from STATA to Word using Courier 8 *** saving the list of independent variables local controls `educat exper exper2 married"

reg logtotwage `controls' *** PREDICTED VALUES quietly req logtotwage educat exper exper2 married sex, cluster (state) predict yhat predict resid, residuals **** plot predicted values and residuals twoway scatter yhat resid *** Exercise 6 * probability of being married ** linear probability model reg married educat exper exper2 totwage *** saving the results estimates store LPM ** Probability model probit married educat exper exper2 totwage *** saving the results estimates store PROBIT ** Logit model logit married educat exper exper2 totwage *** saving the results estimates store LOGIT estimates table LPM PROBIT LOGIT, b(%5.3f) se(%5.3f) *** marginal effects are not given in LPM PROBIT or LOGIT **** interpretation of parameters beta can not be as for OLS. **** to get marginal effects we use a special command, first the model probit married educat exper exper2 totwage **** second, command for marginal effects mfx *** to check the marginal values in OLS -- using LPM (Linear model!) reg married educat exper exper2 totwage mfx *** How to capture state specific effects on getting married? (by using cluster) probit married educat exper exper2 totwage, cluster (state) mfx **** the effect of education does not differ across states (our marginal effects ***** do not differ) *** How to estimate prob of married by gender using Probit? **** two tables in STATA by gender (by male since we renamed the var.sex) rename sex male sort male by male: probit married educat exper exper2 totwage, cluster (state)

*** two comparable tables by gender

quietly probit married educat exper exper2 totwage if male==1 estimates store MEN

quietly probit married educat exper exper2 to twage if male==0 estimates store $\ensuremath{\texttt{WOMEN}}$

estimates table MEN WOMEN, b(%5.3f) se(%5.3f)