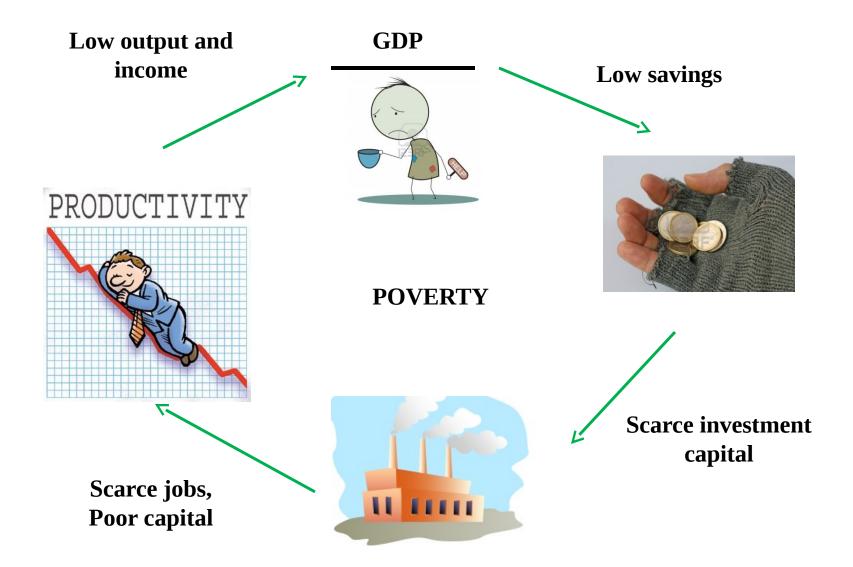
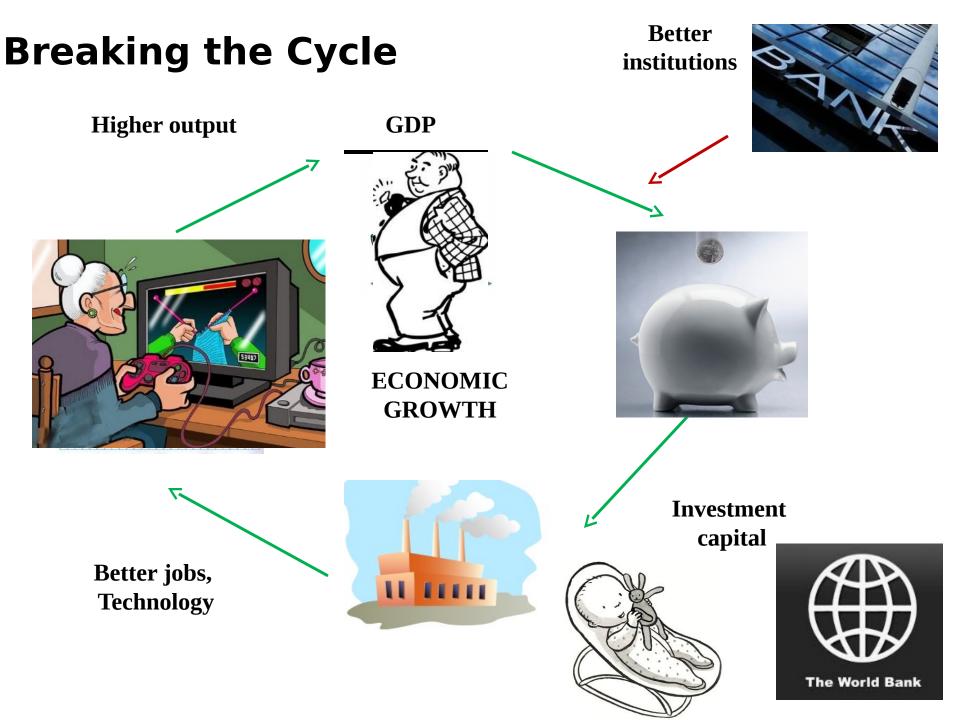
Macroeconomics

Week 4. Economic Growth:


The Role of Technological Progress


March 12th, 2014

Class Outline

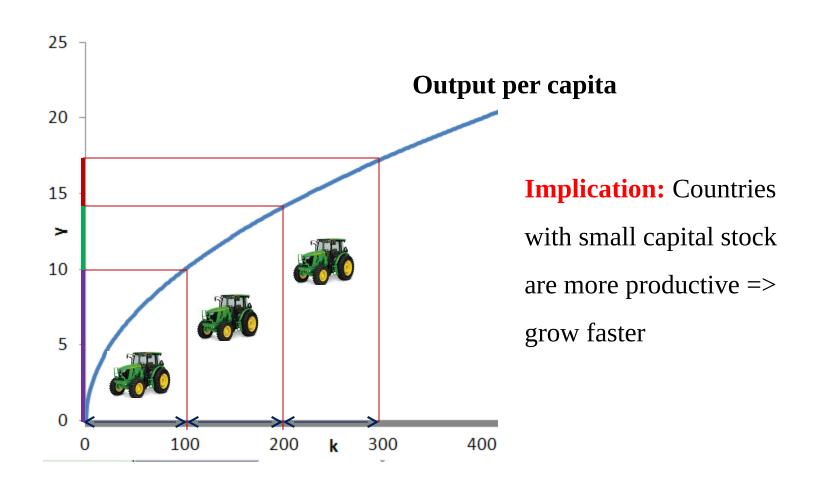
- The Solow model: Deriving steady state
- The Solow model and technological progress
- Growth accounting

he Vicious Circle of Poverty

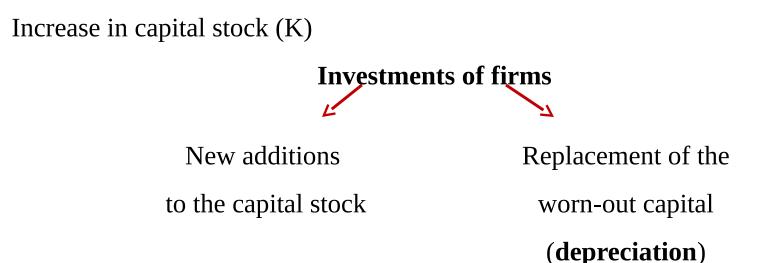
ow-Swan Model of Economic Growth(1956)

Overview

Production function
$$Y = F(K_{(+)}, L_{(+)})$$


• **Diminishing returns** to factor inputs

GDP per capita

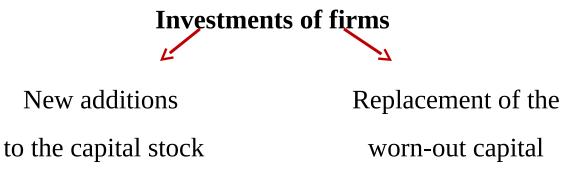

$$\frac{Y_t}{L} = F\left(\frac{K_t}{L}, 1\right) = F\left(\frac{K_t}{L}\right)$$
$$y_t = f(k_t)$$
$$y_t = \sqrt{k_t}$$

minishing Returns to Factor Inputs

$$y = f(k) = \sqrt{k}$$

onomic Growth and Capital Accumulation

Net investment = Total savings – Replacement of the depreciated capital

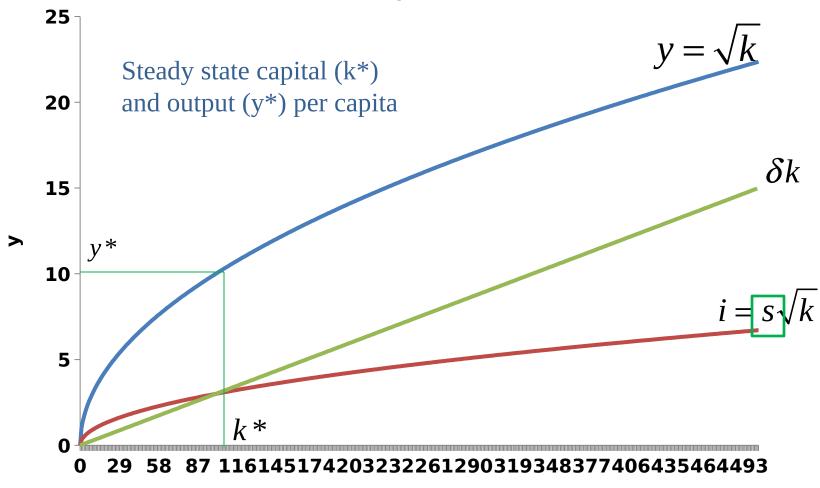

 $K_{t+1} = I_t + (1 - \delta)K_t \qquad \Delta K = sY - \delta K$ $K_{t+1} = sY_t + (1 - \delta)K_t$

Savings of households provide investment funds to firms

s - exogenous savings rate

nomic Growth and Capital Accumulation (Cont

Increase in capital stock (K)


(depreciation)

 $\Delta K = sY - \delta K$

- If $SY > \delta K$ capital stock is growing
- If $SY < \delta_{a}$ K tal stock is shrinking
- Break-even investment $SY = \delta K$

eady State Level of Capital

• The economy would grow as long as $sf(k) > \delta k$

k

 $I = \delta K \to \Delta K = 0 \to \Delta k = 0$

e Solow-Swan Model: Steady State

- **Steady state**: the **long-run** equilibrium of the economy
 - Savings are just sufficient to cover the depreciation of the capital stock
- ✤ In the long run, capital per worker reaches its steady state for an exogenous s
- Increase in s leads to higher capital per worker and higher output per capita
- Output grows only during the transition to a new steady state (not sustainable)
- Economy will **remain** in the steady state (no further growth)

N!B! Savings rate is a fraction of wage, thus is bounded by the interval [0, 1]

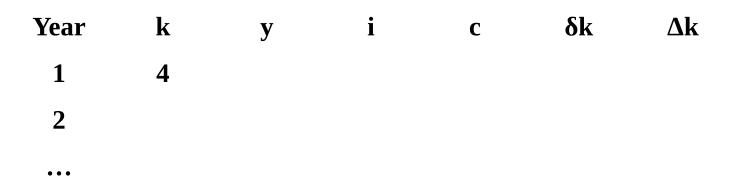
e Solow-Swan Model: Numerical Example

Production function
$$Y = F(K, L) = K^{0.5}L^{0.5}$$

Production function in **per capita terms**

$$\frac{Y}{L} = \frac{K^{0.5}L^{0.5}}{L} = \frac{K^{0.5}}{L^{0.5}}$$
$$k = \frac{K}{L}; \quad y = \frac{Y}{L}$$

GDP per capita:
$$y = \sqrt{k}$$


Savings rate:

s = 30%

Depreciation rate: $\delta = 10\%$

Initial stock of capital per worker: $k_0 = 4$

Solow-Swan Model: Numerical Example (Con

Consumption: C = (1-s)Y

Consumption **per capita C/Y = c**

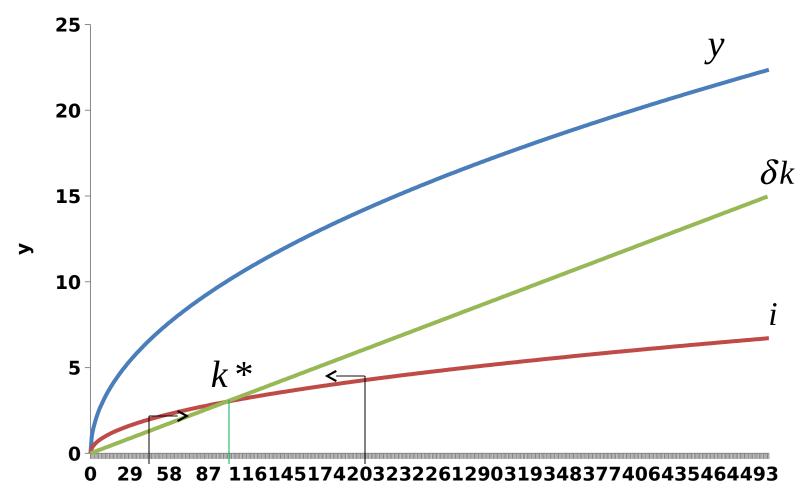
Steady state capital/labor ration:

$$s\sqrt{k} = \delta k \rightarrow k^* = \frac{s^2}{\delta^2}$$

Year	k	у	с	i	δk	Δk
1	4.000	2.000	1.400	0.600	0.400	0.200
2	4.200	2.049	1.435	0.615	0.420	0.195
3	4.395	2.096	1.467	0.629	0.440	0.189
4	4.584	2.141	1.499	0.642	0.458	0.184
5	4.768	2.184	1.529	0.655	0.477	0.178
10	5.602	2.367	1.657	0.710	0.560	0.150
25	7.321	2.706	1.894	0.812	0.732	0.080
100	8.962	2.994	2.096	0.898	0.896	0.002
	0.000	2.000	0.400	0.000	0.000	0.000
00	9.000	3.000	2.100	0.900	0.900	0.000

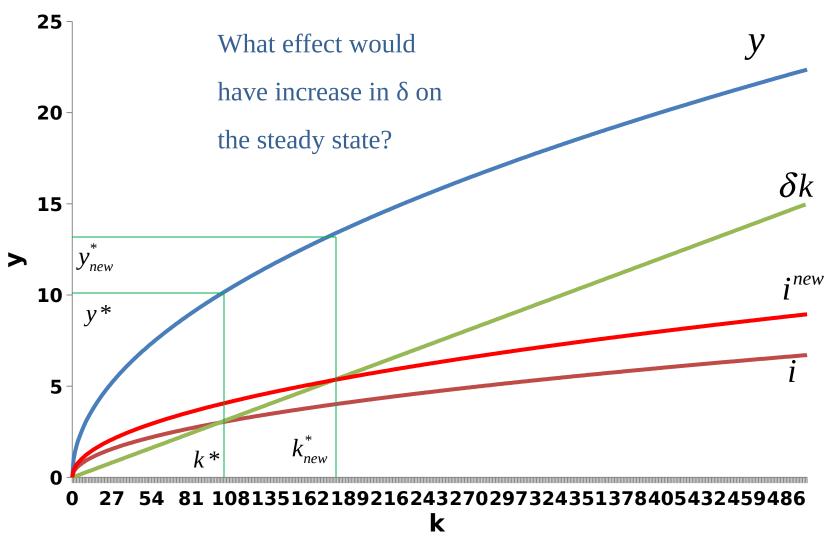
Solow-Swan Model: Convergence to Steady St

N!**B**! Regardless of k_0 , if two economies have the same **s**, **\delta**, **N**, they will reach the **same** steady state

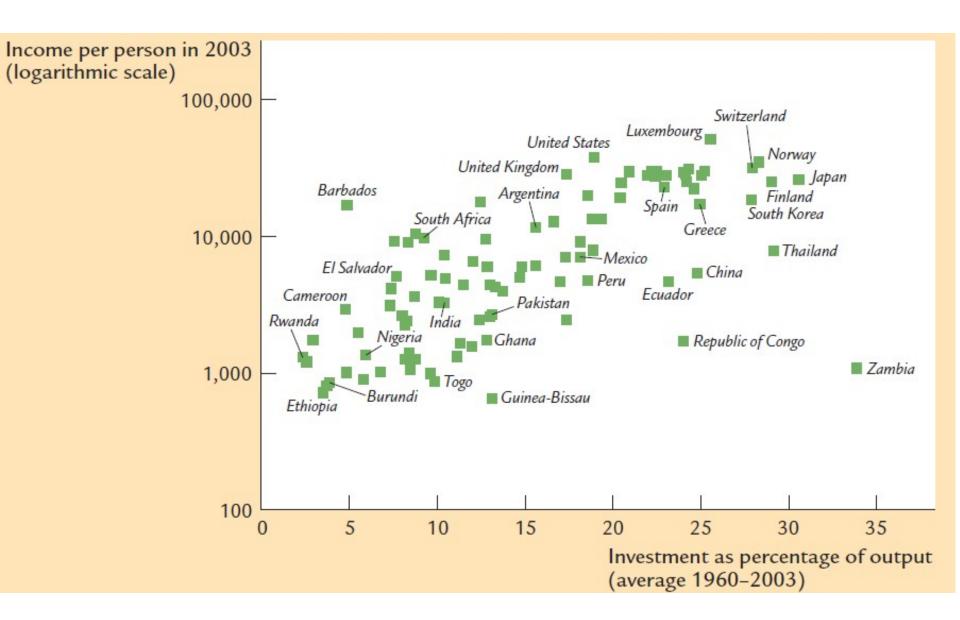

- If countries have the same steady state, poorest countries grow faster
- Not much convergence worldwide

Different countries have different **institutions and policies**

• **Conditional convergence:** comparison of countries with similar savings rates

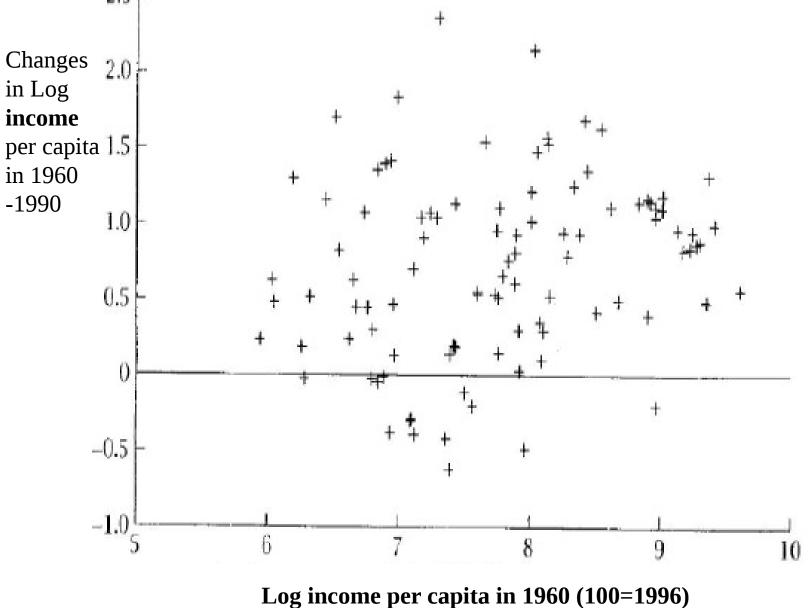

ow Model: Convergence to Steady State

• **Convergence** to steady state

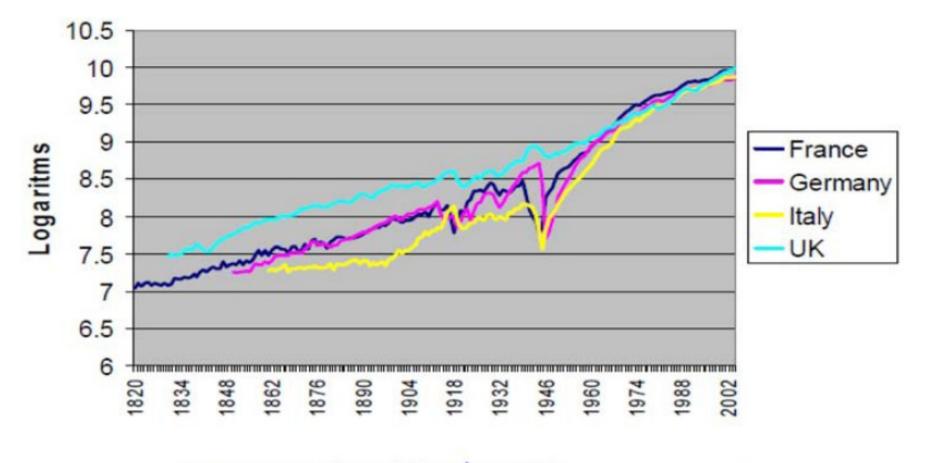


ow Model: Increase in Savings Rate

• Savings rate increases from 30 % to 40 %

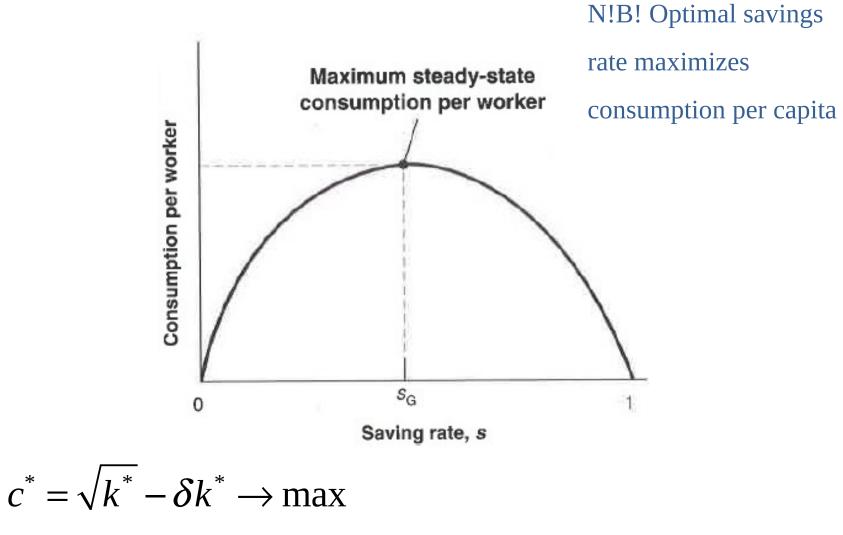


• Economy moves to a **new steady state** => Higher capital and output per capita



Source: Mankiw (2009)

Catch up amongst Europe's big 4


Output per head (US \$ 1990)

Source : Maddison and GGDC

ne Golden Rule Level of Capital

Increasing savings rate means less present consumption

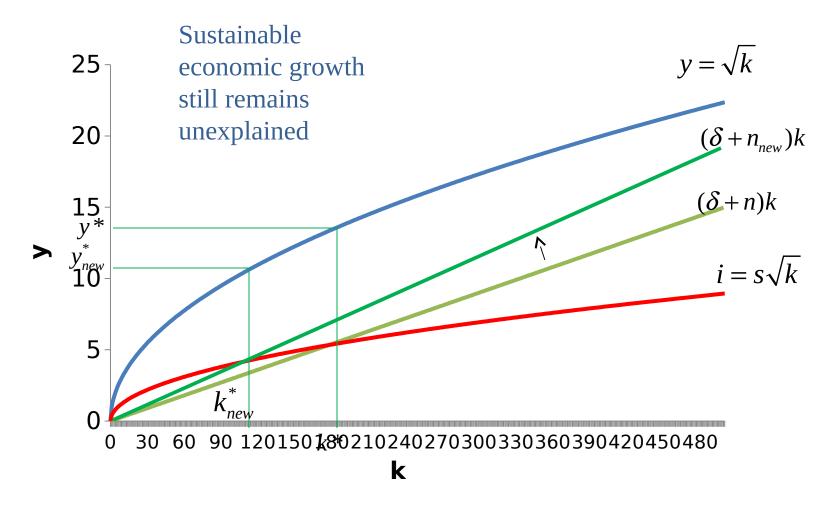
What is the optimal savings rate?

Solow-Swan Model: Population Growth

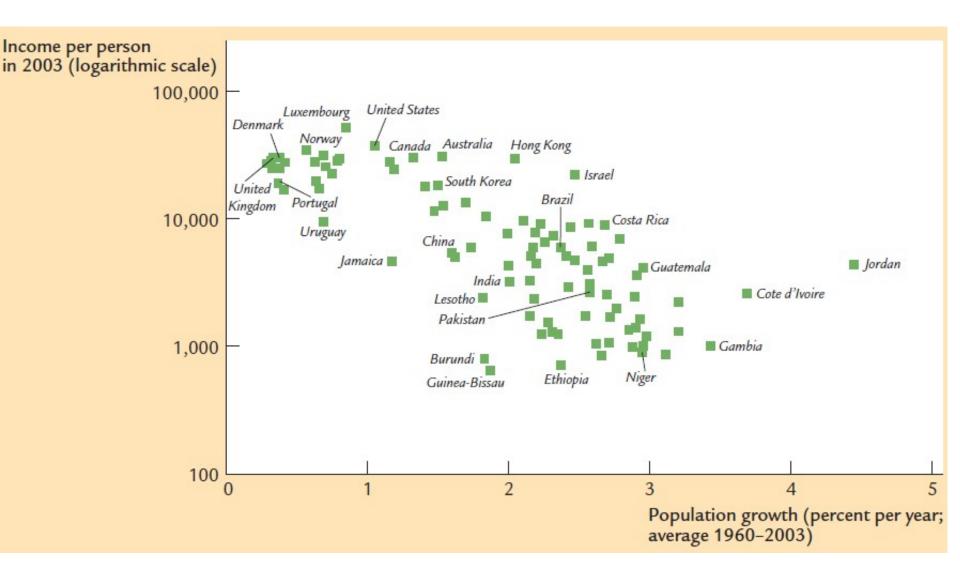
Labor force is growing at a constant rate n =10%

$$Y_t = F(K_t, L_t)$$
$$\Delta k = sy - (\delta + n)k$$

• **Per capita capital** stock is affect by *investment*, *depreciation*, and *population*


growth **Steady state**:

$$s\sqrt{k} = (\delta + n)k \rightarrow k^* = \frac{s^2}{(\delta + n)^2}$$


- Population growth **increases** Y (level effect)
- Population growth **reduces** k* and y*

w-Swan Model: Population Growth (Cont.)

Economies with high rates of population growth will have **lower** GDP per capita

Government policy response?

Role of Technological Progress

• Technological change, increase in factor productivity

✓ Larger output with given quantities of capital and labor

$$Y = F(K, L, A)$$

• State of technology (A)

How does technological progress translates into larger output?

Labor-augmenting technological progress

$$Y = F(K, A \times L) \quad \text{Effective labor}$$

- A as labor efficiency
- TP reduced number of workers needed to produce the same output
- TP increases output using the same number of workers

Solow-Swan Model with Technological Progress

$$Y = F(K_{(+)}, L_{(+)}, A_{(+)})$$

• Technology is improving every year at the **exogenous rate** (*g*)

$$\frac{A_{t+1} - A_t}{A_t} = g$$

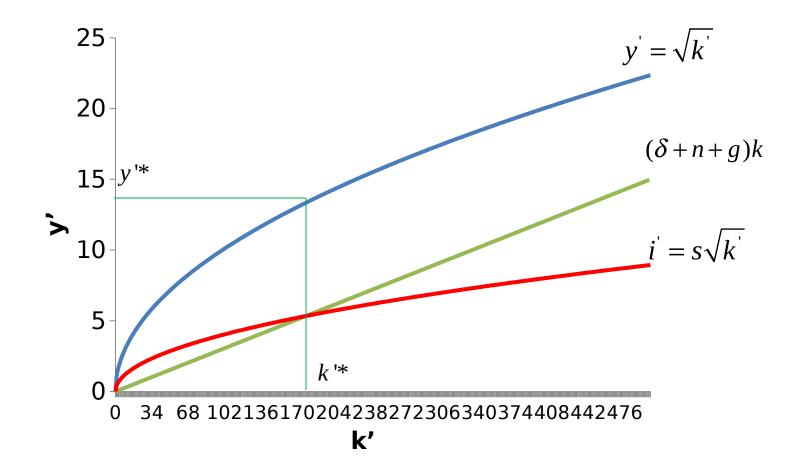
Production function: GDP per effective labor

$$Y = F(K, A \rtimes L)$$
$$\frac{Y_t}{A_t L_t} = F\left(\frac{K_t}{A_t L_t}\right)$$

low-Swan Model with Technological Progress

• From **GDP per effective labor** to the **GDP per capita**?

$$Y = F(K, A \times L)$$


$$\frac{Y_t}{A_t L_t} = F\left(\frac{K_t}{A_t L_t}\right)$$
GDP per
effective
$$y'_t = f(k'_t)$$
labor

Capital per effective labor

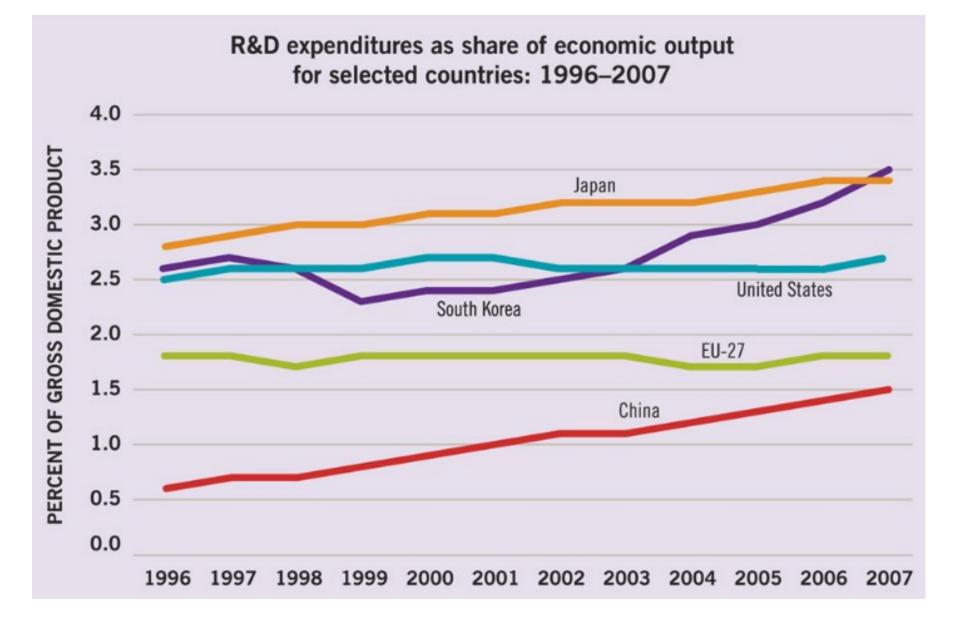
• We are interested in **GDP per capita** $y = \frac{Y_t}{L_t} = A_t \times F\left(\frac{K_t}{A_t L_t}\right) = A_t \times f(k_t)$

low-Swan Model with Technological Progress

Steady state: Constant levels of capital and output per effective worker

olow-Swan Model: Technological Progress (Co

- Capital and output per effective worker are constant in steady state
- What about per capita variables?


$$y^* = A_t \times f(k_*)$$

GDP per capita grows at the rate **of technological progress (sustainable growth)**

Balanced growth path: growth of variables at the same rate

- Per **capita variables** (capital, output and consumption) grow at a constant rate **g**
- **Per effective labor** variables are **not growing** in the steady state

Solow model explains 60 % of cross-country variation of the GDP per capita by differences in savings rate and population growth

Growth Accounting

- Real GDP per capita growth rate for Czech Republic in 2011 was 1.7 %
- Real GDP per capita growth rate for the USA in 2012 was 2.2 %

How much of this growth is due to the factors' accumulation and/or technology?

Growth accounting: breakdown of observed growth of GDP into changes in inputs and technology

$$Y = F(A, K, L)$$
$$\Delta Y = \Delta A + \Delta K + \Delta L$$

Contribution of technology as a residual

$$\Delta A = \Delta Y - \Delta K - \Delta L$$

Growth Accounting (Cont.)

• **Capital (K)** increases by 1 unit

What is the effect on output Y?

$$Y = F(A, K, L)$$

$$F(A, K+1, L) - F(A, K, L)$$

Marginal product of capita (MPK)

TE Capital stock increased by 10 units and MPK =0.1. What is the impact on GDP?

$$uni\Delta Y = 0.1 \times 10 = 1$$

Growth Accounting (Cont.)

• Labor (L) increases by 1 unit

What is the effect on output Y?

$$Y = F(A, K, L)$$

$$F(A,K,L+1)-F(A,K,L)$$

Marginal product of labor (MPL)

TE Labor force increases by 10 units and MPK =0.3.

$$uni \Delta Y = 0.3 \times 10 = 3$$

Solow Residual

Accounting for the increase in all components

$$Y = F(A, K, L)$$
$$\Delta Y = MP_A \times \Delta A + MP_K \times \Delta K + MP_L \times \Delta L$$

How to account for the technological change?

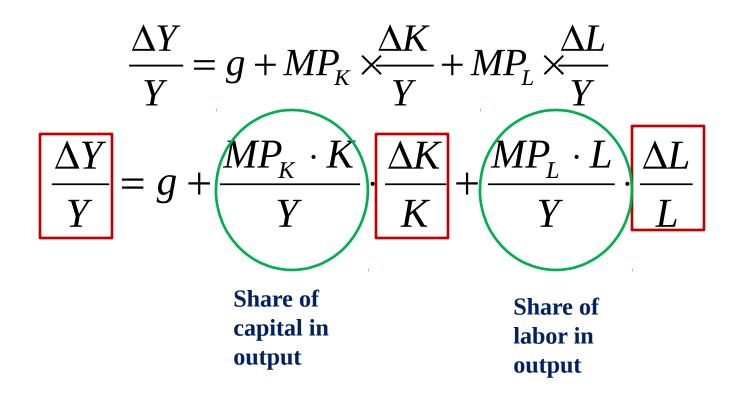
Calculate it as a **residual**

$$MP_A \rtimes \Delta A = \Delta Y - MP_K \rtimes \Delta K - MP_L \rtimes \Delta L$$

Solow Residual: the left-over growth of output when growth attributed to the changes in labor and capital is subtracted

Solow Residual (Cont.)

• Where do we get marginal products of capital and labor?

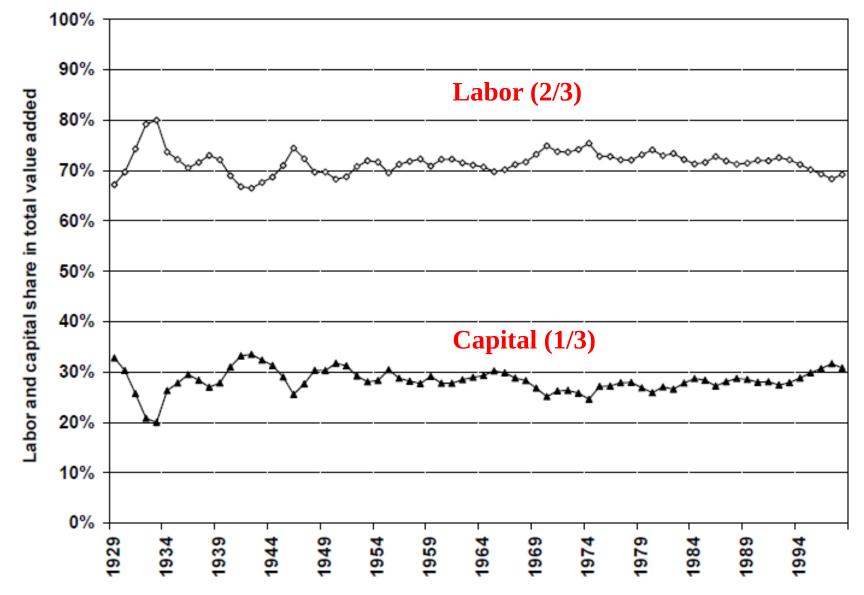

$$\Delta Y = MP_{\!_A} \!\times\!\!\! \Delta A + MP_{\!_K} \!\times\!\!\! \Delta K + MP_{\!_L} \!\times\!\!\! \Delta L$$

Mathematical manipulations

• Transforming changes to growth rates

 $\begin{array}{ll} \textbf{GDP} \\ \textbf{growth} \\ \textbf{rate} \end{array} \quad \begin{array}{l} \underline{\Delta Y} \\ \underline{Y} \end{array} = \begin{array}{l} MP_A \times \underline{\Delta A} \\ \underline{Y} \end{array} + MP_K \times \underline{\Delta K} \\ \underline{Y} \end{array} + MP_L \times \underline{\Delta L} \\ \underline{Y} \end{array}$ $\begin{array}{l} \textbf{Unobservable} \\ \textbf{technological} \\ \textbf{change (g)} \end{array}$ $\begin{array}{l} \underline{\Delta Y} \\ \underline{Y} \end{array} = g + \frac{F_k K}{Y} \frac{\Delta K}{K} + \frac{F_L L}{Y} \frac{\Delta L}{L} \end{array}$

Solow Residual (Cont.)



N!B! Key assumption: Factors of production are **paid marginal product**

• Wages and rental rate of capital reflect productivity of factors

$$\frac{\Delta Y}{Y} = g + \alpha \times \frac{\Delta K}{K} + \beta \times \frac{\Delta L}{L}$$

Historical Factor Shares

Source: Acemoglu, 2009

Accounting for Economic Growth in the United States

SOURCE OF GROWTH

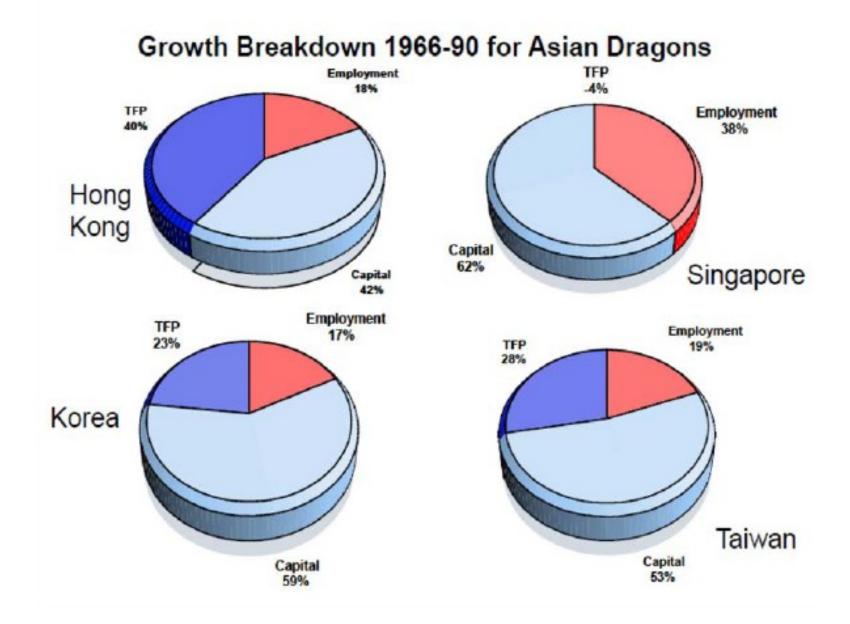
Years	Output Growth $\Delta Y / Y$	$= \alpha \Delta K/K$		Total Factor Productivity + △A/A
		(average	percentage increase p	er year)
1948-2007	3.6	1.2	1.2	1.2
1948-1972	4.0	1.2	0.9	1.9
1972-1995	3.4	1.3	1.5	0.6
1995-2007	3.5	1.3	1.0	1.3

Country	(1) Growth Rate of GDP	(2) Contribution from Capital	(3) Contribution from Labor	(4) TFP Growth Rate
	Panel	A: OECD Countries, 19	47–73	
Canada	0.0517	0.0254	0.0088	0.0175
$(\alpha = 0.44)$		(49%)	(17%)	(34%)
France ^a	0.0542	0.0225	0.0021	0.0296
$(\alpha = 0.40)$		(42%)	(4%)	(54%)
Germany ^b	0.0661	0.0269	0.0018	0.0374
$(\alpha = 0.39)$		(41%)	(3%)	(56%)
Italy ^b	0.0527	0.0180	0.0011	0.0337
$(\alpha = 0.39)$	010027	(34%)	(2%)	(64%)
Japan ^b	0.0951	0.0328	0.0221	0.0402
$(\alpha = 0.39)$	0.0701	(35%)	(23%)	(42%)
Netherlands	0.0536	0.0247	0.0042	0.0248
$(\alpha = 0.45)$		(46%)	(8%)	(46%)
U.K. ^d	0.0373	0.0176	0.0003	0.0193
$(\alpha = 0.38)$	0.0575	(47%)	(1%)	(52%)
U.S.	0.0402	0.0171	0.0095	0.0135
$(\alpha = 0.40)$	0.0102	(43%)	(24%)	(34%)
	Panel 1	B: OECD Countries, 19	, ,	T I I
Canada	0.0369	0.0186	0.0123	0.0057
$(\alpha = 0.42)$	0.0507	(51%)	(33%)	(16%)
France	0.0358	0.0180	0.0033	0.0130
$(\alpha = 0.41)$	0.0000	(53%)	(10%)	(38%)
Germany	0.0312	0.0177	0.0014	0.0132
$(\alpha = 0.39)$	0.0012	(56%)	(4%)	(42%)
Italy	0.0357	0.0182	0.0035	0.0153
$(\alpha = 0.34)$		(51%)	(9%)	(42%)
Japan	0.0566	0.0178	0.0125	0.0265
$(\alpha = 0.43)$		(31%)	(22%)	(47%)
U.K.	0.0221	0.0124	0.0017	0.0080
$(\alpha = 0.37)$		(56%)	(8%)	(36%)
U.S.	0.0318	0.0117	0.0127	0.0076
$(\alpha = 0.39)$		(37%)	(40%)	(24%)

Growth Accounting for a Sample of Countries

A. Young (1995) QJE

Country	Period	Avg growth in per capita income (%)
Honk-Kong	1966-1991	5.7
Singapore	1966-1990	6.8
South Korea	1966-1990	6.8
Taiwan	1966-1990	6.7


Exceptional growth due to changes in TFP or factor accumulation?

e Asian Growth Miracle?

Country	Period	TFP growth
sian Tigers		
Honk-Kong	1966-1991	2.3
Singapore	1966-1990	0.2
South Korea	1966-1990	1.7
Taiwan	1966-1990	2.1
•		
ther Countries		
Canada	1960-1989	0.5
France	1960-1989	1.5
Germany	1960-1989	1.6
Italy	1960-1989	2.0
Japan	1960-1989	2.0
ŪK	1960-1989	1.3
US	1960-1989	0.4
Brazil	1960-1985	1.6
Chile	1960-1985	0.8
Mexico	1960-1985	1.2

The miracle was bound to stop

Exceptional growth due to the factors accumulation? Conclusion?

