Lecture 1. Gross Domestic Product

February 20th, 2014

Lecturer: Dragana Stanišić

Classes: Thursdays, 10:00 – 13:00, MO 309

Course page: <u>http://home.cerge-ei.cz/dragana/Macroeconomics14.html</u>

Textbook: Mankiw, N. G. (2007). Principles of Economics (any edition)

Class Policies

- Attendance list
- Active participation is **encouraged**

Assignments

✓ Presentation (20 min)

Grading

Written evaluation to the Head of the Economics Department

Introduction (Cont.)

Macroeconomics (*Greek makro means big*) describes and explains economic processes that concern **aggregates**

Aggregates: <u>multitude</u> of economic subjects that share some common features.

The **Fallacy of Composition:** the whole is different from the sum of individual parts it is comprised of.

Roots of macroeconomics in the Great Depression (1920s–1930s)

- **Classical** belief in market forces
- Alternative approach: John Keynes "The General Theory of Employment, Interest and Money" (1936)

N!B! Mankiw, G. (2006) The Macroeconomist as a Scientist and Engineer. NBER Working Paper 12349

Introduction (Cont.)

Goals of the Economy

- Economic growth (increase in output)
- Price-level stability (low inflation)
- Full employment (low unemployment rate)
- External balance (avoiding trade deficit)

Policy tools

- Monetary policy: interest rate and money supply
- Fiscal policy: taxes and government spending

Time Dimension

What determines the level of economy's output?

Short run: several years

• Changes in demand

The **IS-LM model** (goods + financial markets)

Medium run: a decade

- Supply of factors
- Aggregate supply-Aggregate demand model (AD-AS)

Long run: several decades/ half a century and more

• Technological progress and factors' accumulation

Crash Darashlia	Year	GDP (mil CZK)
Czech Republic	1990	632 , 691
Gross Domestic Product	1991	815 , 579
(in current prices)	1992	925 , 476
	1993	1,144,645
	1994	1,323,328
N!B!	1995	1,533,676
We will be using a short scale :	1996	1,761,575
<i>88</i>	1997	1,884,924
Million $-1,000,000$	1998	2,061,583
Dillion $= 1,000,000$	1999	2,149,023
$\mathbf{DIIIIOII} = 1,000,000,000$	2000	2,269,695
Trillion = 1,000,000,000,000	2001	2,448,557
	2002	2,567,530
Size of the economy	2003	2,688,107
۲. Element of the second se	2004	2,929,172
	2005	3,116,056
In 2011, GDP of Czech Republic in	2006	3,352,599
US \$:	2007	3,662,573
3.841.370/19.94 - \$192.6 billion	2008	3,848,411
5,0+1,570/17,7+-0172,00000000000000000000000000000000000	2009	3,758,979
	2010	3,799,547

Source: Czech Statistical Office

3,841,370

2011

How big is the size of Czech economy?

Source: IMF statistics database

DEFINITION I

Production approach

GDP is a market value of all final goods and services produced within an economy in a given period of time.

- GDP is a measure of **output**
- Is a single number expressed in **monetary units**

Why do we care?

Output is **correlated** with many important variables: standards of living, wages, unemployment, inflation, budget and trade deficit.

Adding Apples and Oranges

TE The US economy output in 2012: 2 airplanes + 5 hamburgers

GDP is a market value of all final goods and services produced within

an economy in a given period of time

Goods	Quantity (Q)	Unit Price (P)
Airplanes	2	\$1,000,000
Hamburgers	5	\$1

Market value = Market price

$$GDP_{2012}^{USA} = 2 \cdot P^{Airplane} + 5 \cdot P^{Hamburger}$$

 $GDP_{2012}^{USA} = 2 \cdot \$1,000,000 + 5 \cdot \$1 = \$2,000,005$

Multiple Counts

TE McDonald's hamburger costs \$1

Ingredients used for production (meat, veg., bread) cost \$0.5 per hamburger

Contribution to GDP: \$1 or \$1+\$0.5 ?

GDP is a market value of all **final goods and services** produced within an economy in a given period of time

Final good/service: consumed by the end user and does not require further processing

Intermediate goods: used as inputs for production of other goods

N!B! Some goods can be both final and intermediate

To GDP will be include **only \$1** (price of a hamburger)

The value of intermediate goods is **included** in the market price of a final good

Value Added

- The difference between the price of finished product and the costs of inputs used in production
- Increase in value that a business creates by undertaking the production process.

Producer	Price of output	Price of inputs	Value added	
McDonalds	\$1	\$0.5	\$ 0.5	
Farmer	\$ 0.5	\$0	\$ 0.5	
Total	\$1.5	\$ 0.5	\$1 <	Contribution to GDP

DEFINITION II

GDP is the **sum of value added** in the economy during a given period

- Firms pay taxes on the value added of their activities (VAT)
- Firms report sales

Used Goods

- You are buying a Rembrandt's painting from another collector at the price of 1,000,000 Euros
- You are buying stuff at your neighbor's garage sale for 20 CZK

What is the contribution to GDP?

GDP is a market value of all final goods and services produced within an economy **in a given period of time**

GDP includes only the value of **currently produced** goods and services

• Resale of goods represents a transfer of an asset

GDP vs. GNP (Output vs. Location)

TE Czech Beer Factory operating in Slovakia

GDP is a market value of all final goods and services produced

within an economy in a given period of time

- within a country's boarder
- Output of Volkswagen operating in CR is counted in Czech GDP

Gross national product (GNP) is a market value of all final goods and services produced in a given period of time using factors of production owned by the **residents of a country**

Does **not** account for

- Goods and services not sold in the market (home production, child care)
- Underground economy: legal activities hidden from government and illegal activities
- Imputed values

Assumption: The level of inaccuracy in GDP calculations is roughly constant from year to year

=> Inaccuracy can be neglected

GDP: Three Equivalent Approaches

1. Production side

Def I: a market value of all final goods and services produced within an

economy <u>in a given period</u> of time.

Def II: the sum of value added in the economy in a given period of time

Fundamental identity

Total production = Total income = Total expenditure

2. Income method

Def III: GDP is a nation's total income

3. Expenditure method

GDP is the total expenditure on national output of goods and service

THE CIRCULAR FLOW MODEL OF MARKET ECONOMY

The rule of accounting: Expenditure of buyers = Income of sellers

The Circular Flow Model

Assumptions

- A closed economy (no international trade)
- No government
- No savings

Injections

- Government spending (G)
- Exports (EX)
- Investments (I)

Leakages

- Taxation (T)
- Imports (IM)
- Savings (S)

GDP: Three Equivalent Approaches (Cont.)

TE Consider an economy co	onsisting of tw	vo firms			
Firm 1: Steel produ	Firm 2: Car manufacturer				
Revenues from sale	:€100	Revenues from sale cars: €200			
Wages: €80		Wages: €70			
Profit: €20		Profit: €30			
What is the GDP?					
Production approach:	€200				
Income approach:	€80+ €20 +	- €70+ €30 = €200			
Expenditure approach:	€200				
Value added approach:	€100+ (€200	0- €100) = €200			

Treatment of Inventories

• Goods produced in a certain period but not sold

TE A farm fails to sell milk and the milk spoils

Is GDP affected? NO

- Spoiled milk is not sold no effect on consumer expenditure
- The farm does not obtain addition revenue
- The farm's revenue after subtracting wages shrinks

=> Neither total expenditure, nor total income are affected

TE The milk is put into inventory to be sold latter

Is GDP affected? NO

- The farm "purchases" milk for its inventory total expenditures are affected
- The farm gets additional revenue => additional profit => income is affected
- Later sale out of inventory is treated as a sale of used goods

Services and Imputations

Housing services

- Home owners pay a "rent" to themselves
- Included in homeowner expenditures and income

Imputed rent: how much it would cost to rent out the owner's dwelling unit

In the case of no imputations, what effect would the increase in house ownership have on GDP? **GDP would decline**

- Government services (Police officers, politician, etc.)
- Wages are used as a value of service

Summary

✓GDP is a measure of aggregate output

✓ Approaching from production or income side

✓ Aggregate production = Aggregate income

THREE EQUIVALENT APPROACHES

 \checkmark GDP as the value of the final goods output

✓ GDP as a sum of value added

✓ GDP as a sum of income

•In a given period of time

•In a particular economy

Comparison Over Time

What are the reasons for such increase in GDP?

$$GDP_{t} = P_{t}^{1} \cdot Q_{t}^{1} + P_{t}^{2} \cdot Q_{t}^{2} + \dots = \sum_{i=1}^{N} P_{t}^{i} Q_{t}^{i}$$

3 7

Real GDP

Nominal values: expressed in current prices

Nominal GDP in 2011-2012

$$GDP_{2012}^{Italy} = Q_{2012}^{Pizza} \cdot P_{2012}^{Pizza}$$
$$GDP_{2011}^{Italy} = Q_{2011}^{Pizza} \cdot P_{2011}^{Pizza}$$

=> Changes in **quantity** produced **or/and prices** of goods

Real values: expressed in constant prices

The base year approach: Fixing prices by choosing a base year (2011)

$$GDP_{2012}^{real} = Q_{2012}^{Pizza} \cdot P_{2011}^{Pizza}$$

 $GDP_{2011}^{real} = Q_{2011}^{Pizza} \cdot P_{2011}^{Pizza}$

N!B! Nominal GDP = Real GDP in the base year

Real GDP (Cont.)

TE	Consider	again	the	pizza-	produc	cing e	conomy
	001101001			P-L-W		8 -	•••••····

Year	Q	P (\$)	Nominal GDP	Real GDP (100=2005)	Real GDP (100=2000)
2000	10	5	50	80	50
2005	10	8	80	80	50
2012	15	10	150	120	75

• **Real GDP** (100=2005): Real GDP in 2005 prices

N!B! Change in the base year will lead to different levels of real GDP

Czech Nominal vs. Real GDP 1990-2011, CZK

What is the base year? 2005

How would the graph change if we choose 1990 as a base year?

Nominal and Real GDP for China

GDP Growth Rate

• Percentage change in the quantity of goods produced from year to year

• Growth rate
$$g_t = \frac{GDP_t - GDP_{t-1}}{GDP_{t-1}}$$

Year	Q	P (\$)	Nominal GDP	Growth rate (%)
2010	10	5	50	
2011	10	8	80	60
2012	15	10	150	87.5

$$g_{2011}^{N} = \frac{\$80 - \$50}{\$50} = 0.6 \text{ or } 60\%$$
$$g_{2012}^{N} = \frac{\$150 - \$80}{\$80} = 0.875 \text{ or } 87.5\%$$

• Nominal GDP growth rates reflect changes in both Q & P

GDP Growth Rate (Cont.)

Year	Q	Р	Nominal GDP	Growth rate (%)	Real GDP (100=2005)	Growth rate (%)
2010	10	5	50		80	
2011	10	8	80	60	80	0
2012	15	10	150	87.5	120	50

$$g_{2005}^{R} = \frac{\$80 - \$80}{\$80} = 0 \text{ or } 0\%$$
$$g_{2012}^{N} = \frac{\$120 - \$80}{\$80} = 0.5 \text{ or } 50\%$$

Will the real GDP growth rates be affected by the change in the base year **NO**

GDP Growth Rate (Cont.)

TE Multiple goods

	Pizza		Pizza Haircuts		Nominal GDP (\$)
Year	Q	P (\$)	Q	P(\$)	
2011	10	5	5	3	65
2012	15	10	10	5	200

TE Real GDP

$$GDP_{2012}^{R}(100 = 2011) = \$5 \cdot 15 + \$3 \cdot 10 = \$105$$
$$GDP_{2011}^{R}(100 = 2012) = \$10 \cdot 10 + \$5 \cdot 5 = \$125$$

TE Real GDP growth rate

$$g_{2012}^{R}(100 = 2011) = \frac{\$105 - \$65}{\$65} = 0.62 \text{ or } 62\%$$
$$g_{2012}^{R}(100 = 2012) = \frac{\$200 - \$125}{\$125} = 0.6 \text{ or } 60\%$$

Real GDP: The Chain-Weighted Approach

- Variety of goods of services
- Changes in relative prices of goods over time
- \Rightarrow The GDP growth rate is affected by the choice of the base year

What year to be used as the base year?

• A common practice, the base year is changed every 5 years

What are the consequences?

Solution: the chain-weighted approach

• Updates prices every year => more accurate

Real GDP: The Chain-Weighted Approach (Cont.)

Three steps procedure

Calculating change in real GDP between year t and year t+1

Step 1.

- Use year t as a base year => Real GDP => growth rate
- Use year t+1 as a base year => Real GDP => growth rate

 $g_{2012}^{R}(100 = 2011) = 0.62 \text{ or } 62\%$ $g_{2012}^{R}(100 = 2012) = 0.6 \text{ or } 60\%$

Step 2. Calculate the average of two growth rates

$$g_{2012}^{R} = \frac{g_{2012}^{R}(100 = 2011) + g_{2012}^{R}(100 = 2012)}{2} = \frac{60\% + 62\%}{2} = 61\%$$

=> Chain-weighted real GDP growth rate

Real GDP: The Chain-Weighted Approach (Cont.)

Step 3. Construct the real GDP index

- Chose an arbitrary base year: 2011
- Nominal GDP in the base year is equal to real GDP
- Chain-weighted real GDP in the following year

$$GDP_{2012}^{R} = GDP_{2011}^{R} (1 + g_{2012}^{R})$$
$$GDP_{2013}^{R} = GDP_{2012}^{R} (1 + g_{2013}^{R})$$

N!B! For the years before the base year

$$GDP_{2010}^{R} = GDP_{2011}^{R} / (1 + g_{2011}^{R})$$

Chain to the base year: in order to calculate next year real GDP, we need to know the previous year figure

The GDP Deflator

- Changes in the overall price level
- The price of output relative to its price in a base year

GDP Deflator(t) = Nominal **GDP**(t)/Real **GDP**(t)

- It is an index
- Equals to 1 in the base year
- Its level has no economic interpretation
- Removes the inflation out of nominal GDP
- Rate of change = **inflation rate**

 $GDP_t^R = \frac{GDP_t^N}{GDP \ Deflator}$

 $Inflation_{t} = \frac{GDP \ Deflator_{t} - GDP \ Deflator_{t-1}}{GDP \ Deflator_{t-1}}$

Seasonally Adjusted GDP

- Quarter-to-quarter fluctuations
- A pronounced seasonal pattern:

Steady growth over the year - peaking in Q4 - sharp drop in Q1

Czech Republic Real GDP, Q1/2008-Q3/2012

Source: IMF Financial Statistics Database

Seasonally Adjusted GDP (Cont.)

• Average standards of living of the country

$$GDP_{t}^{per\,capita} = \frac{GDP_{t}}{Population_{t}}$$

Country	USD	Rating
Luxemburg	114,508	1
Norway	98,102	2
Qatar	92,501	3
Switzerland	83,383	4
USA	48,112	14
Czech Republic	20,587	39
Russia	13,089	53
China	5,445	90
India	1,489	139
Тодо	588	>190
Niger	365	>190

PPP Adjusted GDP

- Comparing the standards of living (GDP per capita) across countries
- Converting GDP into common currency using currency exchange rates

Issues:

- 1. Variation of exchange rates
- 2. Difference in prices of basic goods

Solution: using a common set of prices which reflects the purchasing power

Purchasing power parity: The price of a typical basket of goods is equal

across countries being converted into the common currency

GDP as a Measure of Well-Being

GDP does **not** account for:

- Non-marker transactions
- Leisure
- Improved product quality
- Distribution of income
- Quality of environment
- Depletion of resources
- Developed by Simon Kuznets in 1930 for BEA as a tool which allows to monitor the effect of government policy

GDP as a Measure of Well-Being (Cont.)

Country	Real GDP per Person (2007)	Life Expectancy	Adult Literacy (% of population)	Internet Usage (% of population)
United States	\$45,592	79 years	99%	63%
Germany	34,401	80	99	45
Japan	33,632	83	99	67
Russia	14, 690	66	99	15
Mexico	14,104	76	93	18
Brazil	9,567	72	90	19
China	5,383	73	93	9
Indonesia	3,843	71	92	7
India	2,753	63	66	3
Pakistan	2,496	66	54	7
Nigeria	1,969	48	72	4
Bangladesh	1,241	66	54	0.3

Source: Mankiw, G. (2011). Principles of Economics

N!B! GDP is correlated with a well-being indicators, but is an imperfect measure of the well-being itself

Data Sources

Czech Republic: Czech statistical office Český statistický úřad (CSU) <u>www.czso.cz</u>

Czech National Bank: Global Economics Outlook

USA U.S. Bureau of Economic Analysis (BEA) <u>www.bea.gov</u>

European Union Directorate General on Economic and Financial Affairs of the European Commission

http://ec.europa.eu/economy_finance/eu/index_en.htm

OECD www.oecd.org

Next class: The National Accounts. Economic Growth