Lecture 7. Economic Growth:

The Role of Technological Progress

Fall Semester, 2014

- The Solow model: Deriving steady state
- The Solow model and technological progress
- Growth accounting

The Vicious Circle of Poverty

Solow-Swan Model of Economic Growth(1956)

- Overview
- Production function $Y = F(K_{(+)}, L_{(+)})$
- Diminishing returns to factor inputs

GDP per capita

$$\frac{Y_t}{L} = F\left(\frac{K_t}{L}, 1\right) = F\left(\frac{K_t}{L}\right)$$
$$y_t = f(k_t)$$
$$y_t = \sqrt{k_t}$$

Diminishing Returns to Factor Inputs

$$y = f(k) = \sqrt{k}$$

Economic Growth and Capital Accumulation

Increase in capital stock (K)
Investments of firms
New additions
Replacement of the
to the capital stock
(depreciation)

Net investment = Total savings – Replacement of the depreciated capital

$$K_{t+1} = I_t + (1 - \delta)K_t \qquad \Delta K = sY - \delta K$$
$$K_{t+1} = sY_t + (1 - \delta)K_t$$

Savings of households provide investment funds to firms

s - **exogenous** savings rate

Economic Growth and Capital Accumulation (Cont.)

Increase in capital stock (K)

Investments of firms
New additions
Replacement of the
to the capital stock
worn-out capital
(depreciation)

$\Delta K = sY - \delta K$

• If $sY > \delta K$ capit

capital stock is growing

• If $sY < \delta K$

• Break-even investment

capital stock is shrinking

 $sY = \delta K$

Steady State Level of Capital

 $I = \delta K \to \Delta K = 0 \to \Delta k = 0$

The Solow-Swan Model: Steady State

- Steady state: the long-run equilibrium of the economy
 - •Savings are just sufficient to cover the depreciation of the capital stock
- * In the long run, capital per worker reaches its steady state for an **exogenous s**
- ✤ Increase in s leads to higher capital per worker and higher output per capita
- Output grows only during the transition to a new steady state (not sustainable)
- Economy will remain in the steady state (no further growth)
- Economy which is not in the steady state will go there => Convergence

Government policy response?

N!B! Savings rate is a fraction of wage, thus is bounded by the interval [0, 1]

The Solow-Swan Model: Numerical Example

Production function
$$Y = F(K, L) = K^{0.5}L^{0.5}$$

Production function in **per capita terms**

$$\frac{Y}{L} = \frac{K^{0.5}L^{0.5}}{L} = \frac{K^{0.5}}{L^{0.5}}$$
$$k = \frac{K}{L}; \quad y = \frac{Y}{L}$$

GDP per capita: $y = \sqrt{k}$

Savings rate: s = 30%

Depreciation rate: $\delta = 10\%$

Initial stock of capital per worker: $k_0 = 4$

Year	k	У	i	С	δk	Δk
1	4					
2						
•••						

Consumption: C = (1-s)Y

Consumption **per capita** C/Y = c

Steady state capital/labor ration:

$$s\sqrt{k} = \delta k \to k^* = \frac{s^2}{\delta^2}$$

k	у	с	i	δk	Δk
4.000	2.000	1.400	0.600	0.400	0.200
4.200	2.049	1.435	0.615	0.420	0.195
4.395	2.096	1.467	0.629	0.440	0.189
4.584	2.141	1.499	0.642	0.458	0.184
4.768	2.184	1.529	0.655	0.477	0.178
5.602	2.367	1.657	0.710	0.560	0.150
7.321	2.706	1.894	0.812	0.732	0.080
8.962	2.994	2.096	0.898	0.896	0.002
0.000	3 000	2 100	0.000	0.000	0.000
	k 4.000 4.200 4.395 4.584 4.768 5.602 7.321 8.962 9.000	k y 4.000 2.000 4.200 2.049 4.395 2.096 4.584 2.141 4.768 2.184 5.602 2.367 7.321 2.706 8.962 2.994 9.000 3.000	kyc 4.000 2.000 1.400 4.200 2.049 1.435 4.395 2.096 1.467 4.584 2.141 1.499 4.768 2.184 1.529 5.602 2.367 1.657 7.321 2.706 1.894 8.962 2.994 2.096 9.000 3.000 2.100	kyci 4.000 2.000 1.400 0.600 4.200 2.049 1.435 0.615 4.395 2.096 1.467 0.629 4.584 2.141 1.499 0.642 4.768 2.184 1.529 0.655 5.602 2.367 1.657 0.710 7.321 2.706 1.894 0.812 8.962 2.994 2.096 0.898 9.000 3.000 2.100 0.900	kyci δk 4.0002.0001.4000.6000.4004.2002.0491.4350.6150.4204.3952.0961.4670.6290.4404.5842.1411.4990.6420.4584.7682.1841.5290.6550.4775.6022.3671.6570.7100.5607.3212.7061.8940.8120.7328.9622.9942.0960.8980.8969.0003.0002.1000.9000.900

The Solow-Swan Model: Convergence to Steady State

N!B! Regardless of k_0 , if two economies have the same **s**, δ , **N**, they will reach the **same** steady state

- If countries have the same steady state, poorest countries grow faster
- •Not much convergence worldwide

Different countries have different institutions and policies

• Conditional convergence: comparison of countries with similar savings rates

Solow Model: Convergence to Steady State

Convergence to steady state

k

Solow Model: Increase in Savings Rate

• Savings rate increases from 30 % to 40 %

• Economy moves to a **new steady state** => Higher capital and output per capita

Source: Mankiw (2009)

World Wide Convergence

Log income per capita in 1960 (100=1996)

Catch up amongst Europe's big 4

Output per head (US \$ 1990)

Source : Maddison and GGDC

The Golden Rule Level of Capital

Increasing savings rate means less present consumption

What is the optimal savings rate?

The Solow-Swan Model: Population Growth

Labor force is growing at a constant rate n =10%

$$Y_t = F(K_t, L_t)$$
$$\Delta k = sy - (\delta + n)k$$

• Per capita capital stock is affect by investment, depreciation, and population growth

•Steady state:

$$s\sqrt{k} = (\delta + n)k \rightarrow k^* = \frac{s^2}{(\delta + n)^2}$$

- Population growth increases Y (level effect)
- Population growth **reduces** k* and y*

Solow-Swan Model: Population Growth (Cont.)

Economies with high rates of population growth will have lower GDP per capita

Government policy response?

The Role of Technological Progress

• Technological change, increase in factor productivity

 \checkmark Larger output with given quantities of capital and labor

$$Y = F(K, L, A)$$

• State of technology (A)

How does technological progress translates into larger output?

Labor-augmenting technological progress

$$Y = F(K, A \cdot L) \quad \text{Effective labor}$$

- A as labor efficiency
- TP reduced number of workers needed to produce the same output
- TP increases output using the same number of workers

The Solow-Swan Model with Technological Progress

$$Y = F(K_{(+)}, L_{(+)}, A_{(+)})$$

• Technology is improving every year at the **exogenous rate** (g)

$$\frac{A_{t+1} - A_t}{A_t} = g$$

Production function: GDP per effective labor

$$Y = F(K, A \cdot L)$$
$$\frac{Y_t}{A_t L_t} = F\left(\frac{K_t}{A_t L_t}\right)$$

The Solow-Swan Model with Technological Progress (Cont.)

• From GDP per effective labor to the GDP per capita?

$$Y = F(K, A \cdot L)$$

$$\frac{Y_t}{A_t L_t} = F\left(\frac{K_t}{A_t L_t}\right)$$
GDP per effective $\longrightarrow y'_t = f(k'_t)$
habor

Capital per effective labor

• We are interested in **GDP per capita**

$$y = \frac{Y_t}{L_t} = A_t \cdot F\left(\frac{K_t}{A_t L_t}\right) = A_t \cdot f(k_t)$$

The Solow-Swan Model with Technological Progress (Cont.)

Steady state: Constant levels of capital and output per effective worker

The Solow-Swan Model: Technological Progress (Cont.)

- Capital and output per effective worker are constant in steady state
- What about per capita variables?

$$y^* = A_t \cdot f(k_*)$$

GDP per capita grows at the rate of technological progress (sustainable growth)

Balanced growth path: growth of variables at the same rate

•Per capita variables (capital, output and consumption) grow at a constant rate g

• Per effective labor variables are not growing in the steady state

N!B! Solow model explains 60 % of cross-country variation of the GDP per capita by differences in savings rate and population growth

Growth Accounting

- Real GDP per capita growth rate for **Czech Republic** in 2011 was **1.7** %
- Real GDP per capita growth rate for the USA in 2012 was 2.2 %

How much of this growth is due to the factors' accumulation and/or technology?

Growth accounting: breakdown of observed growth of GDP into changes in inputs and technology

Y = F(A, K, L) $\Delta Y = \Delta A + \Delta K + \Delta L$

Contribution of technology as a residual

$$\Delta A = \Delta Y - \Delta K - \Delta L$$

Growth Accounting (Cont.)

• Capital (K) increases by 1 unit

What is the effect on output Y?

Y = F(A, K, L)

$$F(A, K+1, L) - F(A, K, L)$$

Marginal product of capita (MP_K)

TE Capital stock increased by 10 units and $MP_K = 0.1$. What is the impact on GDP?

$$\Delta Y = 0.1 \cdot 10 = 1$$
 unit

Growth Accounting (Cont.)

• Labor (L) increases by 1 unit

What is the effect on output Y?

Y = F(A, K, L)

F(A, K, L+1) - F(A, K, L)

Marginal product of labor (MP_L)

TE Labor force increases by 10 units and $MP_{K} = 0.3$.

$$\Delta Y = 0.3 \cdot 10 = 3 \text{ units}$$

Solow Residual

Accounting for the increase in all components

$$Y = F(A, K, L)$$
$$\Delta Y = \underline{MP_A} \cdot \Delta A + \underline{MP_K} \cdot \Delta K + \underline{MP_L} \cdot \Delta L$$

How to account for the technological change?

Calculate it as a residual

$$MP_{A} \cdot \Delta A = \Delta Y - MP_{K} \cdot \Delta K - MP_{L} \cdot \Delta L$$

Solow Residual: the left-over growth of output when growth attributed to the changes in labor and capital is subtracted

Solow Residual (Cont.)

• Where do we get marginal products of capital and labor?

$$\Delta Y = MP_A \cdot \Delta A + MP_K \cdot \Delta K + MP_L \cdot \Delta L$$

Mathematical manipulations

• Transforming changes to growth rates

 $\begin{array}{ll} \textbf{GDP} \\ \textbf{growth} \\ \textbf{rate} \end{array} \quad \begin{array}{l} \underline{\Delta Y} \\ \underline{Y} \end{array} = \begin{array}{l} MP_A \cdot \underline{\Delta A} \\ \underline{Y} \end{array} + MP_K \cdot \underline{\Delta K} \\ \underline{Y} \end{array} + MP_L \cdot \underline{\Delta L} \\ \underline{Y} \end{array}$ $\begin{array}{l} \textbf{Unobservable} \\ \textbf{technological} \\ \textbf{change (g)} \end{array}$ $\begin{array}{l} \underline{\Delta Y} \\ \underline{Y} \end{array} = g + \frac{F_k K}{Y} \frac{\Delta K}{K} + \frac{F_L L}{Y} \frac{\Delta L}{L} \end{array}$

Solow Residual (Cont.)

N!B! Key assumption: Factors of production are **paid marginal product**

• Wages and rental rate of capital reflect productivity of factors

$$\frac{\Delta Y}{Y} = g + \alpha \cdot \frac{\Delta K}{K} + \beta \cdot \frac{\Delta L}{L}$$

Historical Factor Shares

Source: Acemoglu, 2009

Accounting for Economic Growth in the United States

Years				SOURCE OF GROWTH				
	Output Growth ∆Y/Y	=	Capital αΔ <i>K/K</i>	+	Labor (1 − α)Δ <i>L/L</i>	+	Total Factor Productivity ∆A/A	
		(average percentage increase per year)						
1948–2007	3.6		1.2		1.2	. ,	1.2	
1948–1972	4.0		1.2		0.9		1.9	
1972–1995	3.4		1.3		1.5		0.6	
1995–2007	3.5		1.3		1.0		1.3	

Source: Mankiw, 2009

Country	(1) Growth Rate of GDP	(2) Contribution from Capital	(3) Contribution from Labor	(4) TFP Growth Rate
	Panel A	: OECD Countries, 19	47-73	
Canada	0.0517	0.0254	0.0088	0.0175
$(\alpha = 0.44)$		(49%)	(17%)	(34%)
France ^a	0.0542	0.0225	0.0021	0.0296
$(\alpha = 0.40)$		(42%)	(4%)	(54%)
Germany ^b	0.0661	0.0269	0.0018	0.0374
$(\alpha = 0.39)$	0.0001	(41%)	(3%)	(56%)
Italy ^b	0.0527	0.0180	0.0011	0.0337
$(\alpha - 0.39)$	0.0527	(34%)	(2%)	(64%)
Tenen ^b	0.0951	0.0328	0.0221	0.0402
$\int apan (\alpha - 0.30)$	0.0951	(35%)	(23%)	(42%)
(a = 0.59) Netherlande ^c	0.0536	0.0247	0.0042	0.0248
$(\alpha = 0.45)$	0.0550	(46%)	(8%)	(46%)
(a = 0.45)	0.0272	0.0176	0.0003	0.0103
(n = 0.28)	0.0373	(47%)	(1%)	(52%)
$(\alpha = 0.56)$	0.0402	(47%)	0.0005	0.0135
U.S.	0.0402	(420)	(24%)	(34%)
$(\alpha = 0.40)$	*	(45%)	(24%)	(34%)
	Panel B	: OECD Countries, 19	6095	
Canada	0.0369	0.0186	0.0123	0.0057
$(\alpha = 0.42)$		(51%)	(33%)	(16%)
France	0.0358	0.0180	0.0033	0.0130
$(\alpha = 0.41)$	1	(53%)	(10%)	(38%)
Germany	0.0312	0.0177	0.0014	0.0132
$(\alpha = 0.39)$		(56%)	(4%)	(42%)
Italy	0.0357	0.0182	0.0035	0.0153
$(\alpha = 0.34)$		(51%)	(9%)	(42%)
Japan	0.0566	0.0178	0.0125	0.0265
$(\alpha = 0.43)$		(31%)	(22%)	(47%)
U.K.	0.0221	0.0124	0.0017	0.0080
$(\alpha = 0.37)$		(56%)	(8%)	(36%)
U.S.	0.0318	0.0117	0.0127	0.0076
$(\alpha - 0.39)$	*-** - *	(37%)	(40%)	(24%)

Growth Accounting for a Sample of Countries