CERGE-EI Summer 2014 Econometrics II Instructors: Nikolas Mittag, Dragana Stanišič TA: Jelena Plazonja, Gega Todua Date: 05/05/2014

Exercise Session 2

Concepts

• Partialling Out

Suppose we have a model:

$$y = \mathbf{X_1}\hat{\mathbf{b_1}} + \mathbf{X_2}\hat{\mathbf{b_2}} + \epsilon$$

We can get $\hat{\mathbf{b}_2}$ by the following way:

- 1) reg Y on $\mathbf{X_1} \to \text{predict residuals } \hat{\mathbf{U_i}}$
- 2) reg \mathbf{X}_2 on $\mathbf{X}_1 \rightarrow$ predict residuals $\hat{\eta_i}$
- 3) reg $\hat{\mathbf{U}}_{\mathbf{i}}$ on $\hat{\eta}_{\mathbf{i}}$: $\hat{\mathbf{U}}_{\mathbf{i}} = \hat{\eta}_{\mathbf{i}}\hat{b}_2 + \alpha_i$

Alternatively, Suppose we have a model:

$$Y_i = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \epsilon$$

We can get a coefficient β_i by the following way:

- 1) reg X_j on $X_1, X_2, \dots, X_k \to$ predict residuals \hat{v}_i
- 2) reg y on \hat{v}_i .
- Omitted Variable Bias (OVB)

Suppose we have a model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1} + \dots + \beta_{k-1}X_{k-1} + \beta_{k}X_{k} + \epsilon$$

and we omit X_k from the regression. The estimated coefficient will be:

$$\tilde{\beta}_j = \hat{\beta}_j + \hat{\beta}_k \tilde{\delta}_{kj}$$

Where $\tilde{\beta}_j$ is a coefficient from $Y_i = \beta_0 + \beta_1 X_1 + \dots + \beta_{k-1} X_{k-1} + \epsilon$, $\hat{\beta}_j$ and $\hat{\beta}_k$ are coefficients from a true model $Y_i = \beta_0 + \beta_1 X_1 + \dots + \beta_{k-1} X_{k-1} + \beta_k X_k + \epsilon$, $\tilde{\delta}_{kj}$ is a slope coefficient from simple regression of X_j on X_1, X_2, \dots, X_k .

Therefore, the OVB will be equal to $\hat{\beta}_k \tilde{\delta}_{kj}$ and the sign of it depend on the signs of both coefficients.

Exercises

1. What is the interpretation of b > 0 in the following regression models? Let's say x is monthly disposable income and y is monthly consumption measured in dollars. Derive.

 $y_i = a + bx_i + u_i$ $y_i = a + bln(x_i) + u_i$ $ln(y_i) = a + bx_i + u_i$ $ln(y_i) = a + bln(x_i) + u_i$

2. Linear transformation of the data

Consider the least squares regression of \mathbf{Y} on \mathbf{K} variables (with a constant) \mathbf{X} . Consider an alternative set of regressors $\mathbf{Z} = \mathbf{XP}$, where \mathbf{P} is a nonsingular KxK matrix. Thus, each column of \mathbf{Z} is a mixture of some of the columns \mathbf{X} . Prove, that the residual vectors in the regressions of \mathbf{Y} on \mathbf{X} and \mathbf{Y} on \mathbf{Z} are identical. What relevance does this have to the question of changing the fit of a regression by changing the units of measurement of the independent variables?

- 3. Demeaning data In the OLS regression of **Y** on a constant and **X**, will we get the same coefficients if we demean both **Y** and **X** and run regression of **Y** on **X** without constant? What if we only demean **X**? If only **Y**?
- 4. Suppose we have a model

$$\mathbf{Y} = \beta_1 \mathbf{X_1} + \beta_2 \mathbf{X_2} + \epsilon$$

and suppose, $\mathbf{b_1}$ is a coefficient vector after regressing of Y on only X_1 . Show, that $E[\mathbf{b_1}|\mathbf{X}] = \beta_1 + \mathbf{P_{1,2}}\beta_2$, where $\mathbf{P_{1,2}}$ is the column of slopes in the regression of the corresponding column of $\mathbf{X_2}$ on the columns of $\mathbf{X_1}$

- 5. Suppose that your data set consists of three observations of (y, x): (1, 1), (4, 2), (2, 3). Define a dummy variable D which is equal to 1 for x > 3/2 and zero otherwise. We would like to estimate the following regression equation, $y = A_0 + A_1D + e$
 - (a) Calculate A_0 and A_1 using OLS.
 - (b) Plot the three data points and your regression line.
 - (c) Explain, in one or two sentences, what the coefficient of the dummy variable measures.
- 6. Suppose we have a model:

$$Y_i = a + bD_{1i} + cD_{2i} + \epsilon$$

where $D_{2i} = 1 - D_{1i}$

Show, that the model suffers from multicolinearity.

7. Suppose we observe the following model:

$$log(wage_i) = \beta_0 + \beta_1 train_i + \beta_2 educ_i + \beta_3 exper_i + u_i$$

Where *train* is a binary variable equal to unity if a worker participated in the program.

- (a) What is the interpretation of coefficients β_1 and β_2 .
- (b) Think of the error term u as containing unobserved worker ability. if less able workers have a greater chance of being selected from the program, and you use an OLS analysis, what can you say about the likely bias in the OLS estimator of β_1 ?