CERGE-EI

Summer 2014
Econometrics II
Instructors: Nikolas Mittag, Dragana Stanišic̀
TA: Jelena Plazonja, Gega Todua
Date: 05/05/2014

Exercise Session 2

Concepts

- Partialling Out

Suppose we have a model:

$$
y=\mathbf{X}_{\mathbf{1}} \hat{\mathbf{b}_{1}}+\mathbf{X}_{\mathbf{2}} \hat{\mathbf{b}_{2}}+\epsilon
$$

We can get $\hat{\mathbf{b}_{\mathbf{2}}}$ by the following way:

1) reg Y on $\mathbf{X}_{\mathbf{1}} \rightarrow$ predict residuals $\hat{\mathbf{U}}_{\mathbf{i}}$
2) reg $\mathbf{X}_{\mathbf{2}}$ on $\mathbf{X}_{\mathbf{1}} \rightarrow$ predict residuals $\hat{\eta}_{\mathbf{i}}$
3) reg $\hat{\mathbf{U}}_{\mathbf{i}}$ on $\hat{\eta}_{\mathbf{i}}: \hat{\mathbf{U}}_{\mathbf{i}}=\hat{\eta}_{\mathbf{i}} \hat{\boldsymbol{b}_{2}}+\alpha_{i}$

Alternatively, Suppose we have a model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\ldots \beta_{k} X_{k}+\epsilon
$$

We can get a coefficient β_{j} by the following way:

1) reg X_{j} on $X_{1}, X_{2} \ldots X_{k} \rightarrow$ predict residuals $\hat{v_{i}}$
2) reg y on \hat{v}_{i}.

- Omitted Variable Bias (OVB)

Suppose we have a model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\ldots . \beta_{k-1} X_{k-1}+\beta_{k} X_{k}+\epsilon
$$

and we omit X_{k} from the regression. The estimated coefficient will be:

$$
\tilde{\beta}_{j}=\hat{\beta}_{j}+\hat{\beta}_{k} \tilde{\delta}_{k j}
$$

Where $\tilde{\beta}_{j}$ is a coefficient from $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\ldots . \beta_{k-1} X_{k-1}+\epsilon, \hat{\beta}_{j}$ and $\hat{\beta}_{k}$ are coefficients from a true model $Y_{i}=\beta_{0}+\beta_{1} X_{1}+\ldots . \beta_{k-1} X_{k-1}+\beta_{k} X_{k}+\epsilon, \delta_{k j}$ is a slope coefficient from simple regression of X_{j} on $X_{1}, X_{2} \ldots X_{k}$.
Therefore, the OVB will be equal to $\hat{\beta}_{k} \tilde{\delta}_{k j}$ and the sign of it depend on the signs of both coefficients.

Exercises

1. What is the interpretation of $b>0$ in the following regression models? Let's say x is monthly disposable income and y is monthly consumption measured in dollars. Derive.

$$
\begin{aligned}
& y_{i}=a+b x_{i}+u_{i} \\
& y_{i}=a+b \ln \left(x_{i}\right)+u_{i} \\
& \ln \left(y_{i}\right)=a+b x_{i}+u_{i} \\
& \ln \left(y_{i}\right)=a+b \ln \left(x_{i}\right)+u_{i}
\end{aligned}
$$

2. Linear transformation of the data

Consider the least squares regression of \mathbf{Y} on K variables (with a constant) \mathbf{X}. Consider an alternative set of regressors $\mathbf{Z}=\mathbf{X P}$, where \mathbf{P} is a nonsingular KxK matrix. Thus, each column of \mathbf{Z} is a mixture of some of the columns \mathbf{X}. Prove, that the residual vectors in the regressions of \mathbf{Y} on \mathbf{X} and \mathbf{Y} on \mathbf{Z} are identical. What relevance does this have to the question of changing the fit of a regression by changing the units of measurement of the independent variables?
3. Demeaning data In the OLS regresion of \mathbf{Y} on a constant and \mathbf{X}, will we get the same coefficients if we demean both \mathbf{Y} and \mathbf{X} and run regression of \mathbf{Y} on \mathbf{X} without constant? What if we only demean \mathbf{X} ? If only \mathbf{Y} ?
4. Suppose we have a model

$$
\mathbf{Y}=\beta_{\mathbf{1}} \mathbf{X}_{\mathbf{1}}+\beta_{\mathbf{2}} \mathbf{X}_{\mathbf{2}}+\epsilon
$$

and suppose, $\mathbf{b}_{\mathbf{1}}$ is a coefficient vector after regressing of Y on only X_{1}. Show, that $E\left[\mathbf{b}_{\mathbf{1}} \mid \mathbf{X}\right]=\beta_{\mathbf{1}}+\mathbf{P}_{\mathbf{1 , 2}} \beta_{\mathbf{2}}$, where $\mathbf{P}_{\mathbf{1 , 2}}$ is the column of slopes in the regression of the corresponding column of $\mathbf{X}_{\mathbf{2}}$ on the columns of $\mathbf{X}_{\mathbf{1}}$
5. Suppose that your data set consists of three observations of $(y, x):(1,1),(4,2),(2,3)$. Define a dummy variable D which is equal to 1 for $x>3 / 2$ and zero otherwise. We would like to estimate the following regression equation, $y=A_{0}+A_{1} D+e$
(a) Calculate A_{0} and A_{1} using OLS.
(b) Plot the three data points and your regression line.
(c) Explain, in one or two sentences, what the coefficient of the dummy variable measures.
6. Suppose we have a model:

$$
Y_{i}=a+b D_{1 i}+c D_{2 i}+\epsilon
$$

where $D_{2 i}=1-D_{1 i}$
Show, that the model suffers from multicolinearity.
7. Suppose we observe the following model:

$$
\log \left(\text { wage }_{i}\right)=\beta_{0}+\beta_{1} \text { train }_{i}+\beta_{2} \text { educ }_{i}+\beta_{3} \text { exper }_{i}+u_{i}
$$

Where train is a binary variable equal to unity if a worker participated in the program.
(a) What is the interpretation of coefficients β_{1} and β_{2}.
(b) Think of the error term u as containing unobserved worker ability. if less able workers have a greater chance of being selected from the program, and you use an OLS analysis, what can you say about the likely bias in the OLS estimator of β_{1} ?

