Exchange rate peg versus inflation targeting prior to a monetary union entry

Juraj Antal František Brázdik juraj.antal@cnb.cz

frantisek.brazdik@cerge-ei.cz

ČNB and CERGE-EI, Praha, Czech Republic

The views expressed in this article are those of the authors and do not necessarily reflect those of the Czech National Bank.

Presentation outline

- Objectives
- Model
 - Household
 - Firm
 - Monetary policies
- Preliminary results
 - IRFs
 - Variance ratio plots
- Ongoing research
- Future research

Objectives

- Focus on small open economy entering a monetary union
- Examine monetary policy rules:
 - differ across economies:
 - 3 economies: independent, transitory and unified
 - Independent and transitory economy: Inflation (IT)
 vs. exchange (ET) rate targeting
- Evaluate macroeconomic stability
 - variance of series
- Abandon IT after the announcement of monetary union entry?
- How aggressive will be the response of interest rates to shocks?

Small open economy model

- Svensson (2000) framework
 - All goods are tradable
 - Complete markets
 - Nominal rigidities
 - Monopolistically competitive firms
 - Two countries:
 - Home small economy
 - Foreign large economy (monetary union)
- Domestic monetary policy rules:
 - independent
 - transitory no institutional constraints
 - unified fixed ex. rate

Small open economy model: Household

- Separable utility function: consumption and labor
- Consumes CES composite good: ω share of foreign good
- Expenditures minimization:

$$P_t = [(1 - \omega)(P_t^h)^{1-\theta} + \omega(P_t^f)^{1-\theta}]^{\frac{1}{1-\theta}}$$

- Law of one price holds: $P_t^f = S_t P_t^{f*}$
- Assume $P_t^{f*} = P_t^* \Rightarrow$ the real exchange rate is given by $Q_t = S_t P_t^* / P_t$
- Log-linearization:

$$q_t = p_t^f - p_t = s_t + p_t^* - p_t$$

Small open economy model: Aggregate demand

Euler equation:

$$c_t = E_t c_{t+1} - \frac{1}{\sigma} (i_t - E_t \pi_{t+1}^{CPI})$$

- \circ one-period nominal interest rate i_t
- \circ Domestic CPI inflation: $\pi_t^{CPI} = p_t p_{t-1}$
- Long term interest rate:

$$\rho_t = \sum_{\tau=0}^{\infty} r_{t+\tau|t} = \sum_{\tau=0}^{\infty} (i_{t+\tau} - \pi_{t+\tau+1|t})$$

- Foreign demand: $c_t^{*h} = \beta_y y_t^* + \theta^* \omega^* q_t$
- AD:

$$y_{t+1}^{d} = \beta_{y} y_{t}^{d} + (1 - \beta_{y})(-(1 - \omega)\sigma\rho_{t+1|t})$$
$$-[\omega\theta^{*}\omega^{*} - (1 - \omega)(\sigma - \theta)\omega]q_{t+1|t} + \omega\beta_{y}^{*} y_{t+1|t}^{*}) + \eta_{t+1}^{d}$$

Small open economy model: Output gap

- Natural output: $y_{t+1}^n = \gamma_y^n y_t^n + \eta_{t+1}^n$
- Output gap: $y_t = y_t^d y_t^n$

$$y_{t+1} = \beta_y y_t - (1 - \beta_y)(1 - \omega)\sigma \rho_{t+1|t}$$

$$+ (1 - \beta_y)[\omega \theta^* \omega^* - (1 - \omega)(\sigma - \theta)\omega]q_{t+1|t}$$

$$+ (1 - \beta_y)\omega \beta_y^* y_{t+1|t}^* - (\gamma_y^n - \beta_y)y_t^n + \eta_{t+1}^d - \eta_{t+1}^n$$

Small open economy model: Firm

- Continuum of domestic goods
- CRS technology
- labor supplied by households at composite price
- Dixit-Stiglitz aggregate of domestic with elasticity of substitution $\nu>1$
- Domestic good demand: $Y_t^j = Y_t^d \left(\frac{\tilde{P_t^j}}{P_t^h}\right)^{-\nu}$
- Calvo (1983): reset price with probability α
- Philips curve:

$$\pi_{t} = \alpha_{\pi} \pi_{t-1} + (1 - \alpha_{\pi}) \pi_{t+1|t} + \alpha_{y} y_{t} + \alpha_{q} q_{t} + \epsilon_{t}$$

Foreign economy

- Interest parity condition: $i_t i_t^* = s_{t+1|t} s_t + \phi_t$
- Large economy
 - AR(1) process:
 - foreign inflation
 - foreign exchange risk premium
 - foreign output

Monetary policy rules

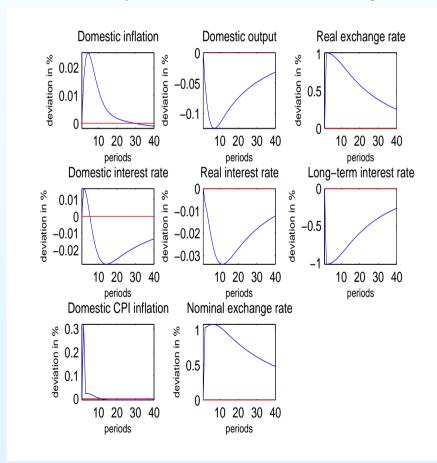
Independent economy:

$$i_t^I = f_\pi \pi_t + f_y y_t + f_q q_t + f_s s_t$$

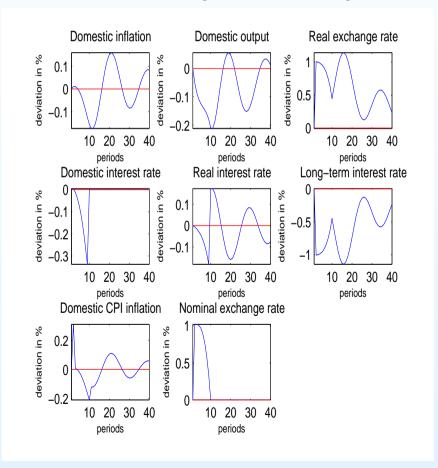
Unified economy:

$$i_t^U = f_{\pi}^* \pi_t^* + f_y^* y_t^* + f_q q + 10^{14} s_t$$

Transitory economy:


$$i_t^T = regime i_t^I + (1 - regime) i_t^U$$

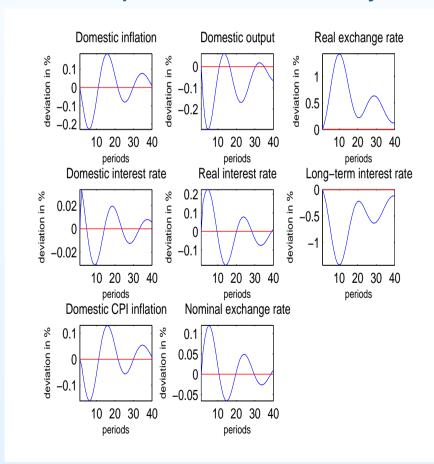
- Agents know from the start of the simulation about future exogenous changes
- Compute the rational expectation solution
- Second order approximation of the rule
- Dynare: Future information is added to the state space

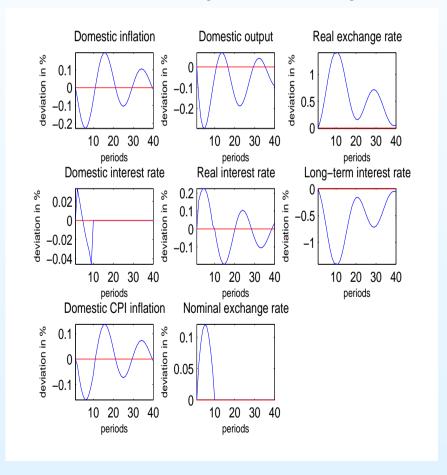

IRFs Comparison: Inflation targeting

1% deviation in natural output

Independent economy

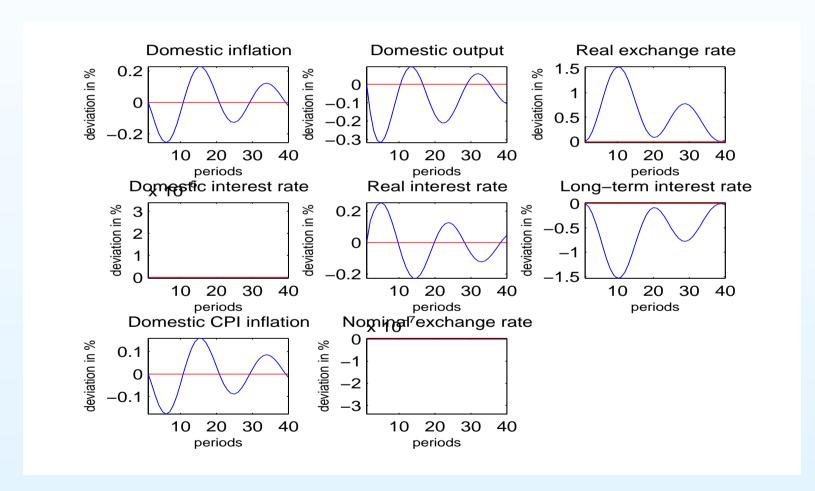
Transitory economy

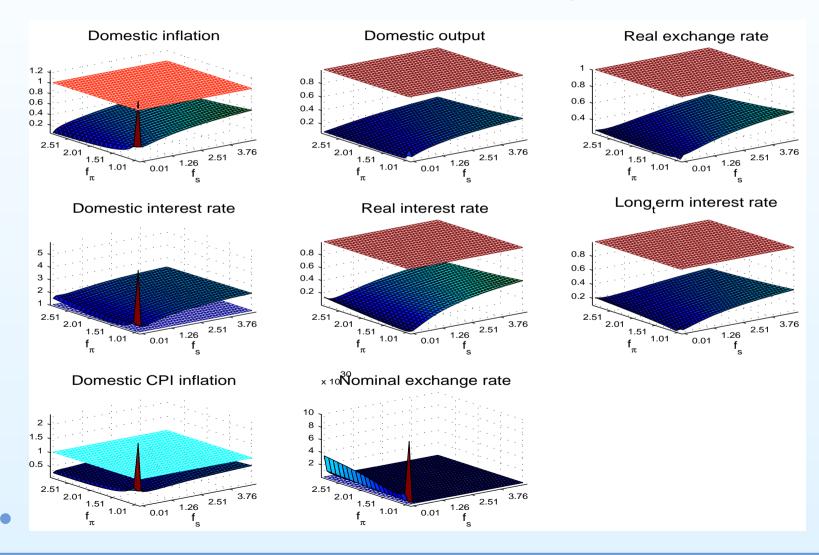



IRFs Comparison: Exchange rate targeting

1% deviation in natural output

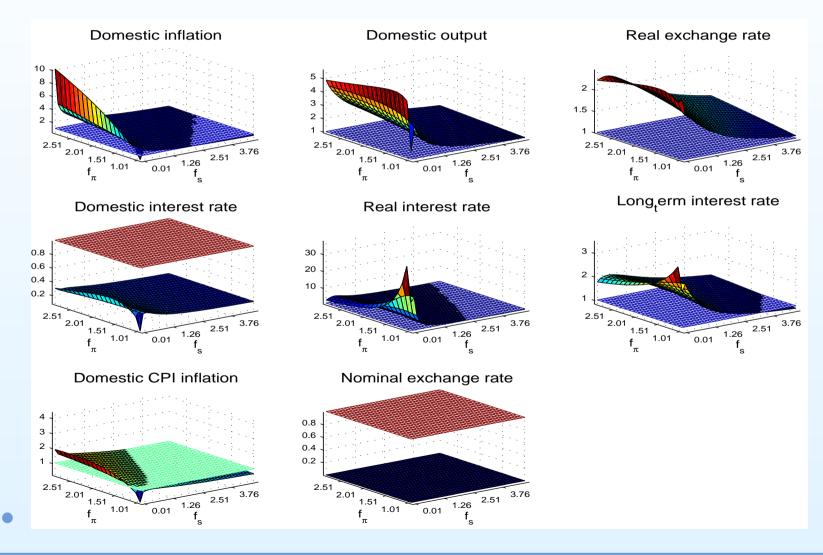
Independent economy


Transitory economy


IRFs: Unified economy

1% deviation in natural output

Results: Variance ratio plots


• Comparison of regimes: $ratio = \frac{independent}{unified}$

Results: Variance ratio plots

• Comparison of regimes: $ratio = \frac{transitory}{independent}$

Recent work

- Caveats:
 - Order of approximation
 - Conditional vs. unconditional variance
- Focus on announcement—entry period
- Conditional variance computation
- Define loss function for comparison

$$L = \alpha_1 \pi_t^2 + \alpha_2 y_t^2 + \alpha_3 s_t^2$$

ad hoc variance weights in loss function

Future work

- FOCs for model with habit formation and two sectors (tradable/nontradable)
- Full second order approximation
- Derivation of loss function
 - weights implied by the parameters and model
 - Welfare analysis of regime choice in transition period
 - Is ET preferred regime in transition period?
 - Should IT authority switch to ET/fixed ex. rate?

