Analysis of technical efficiency: Factors affecting efficiency of West Java rice farms Data envelopment analysis

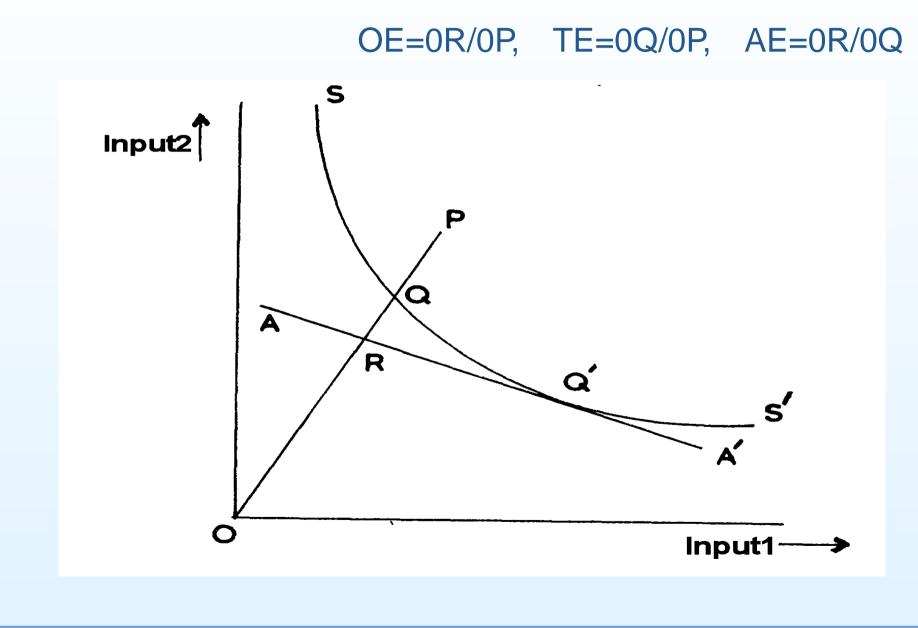
František Brázdik

frantisek.brazdik@cerge-ei.cz

CERGE-EI, Praha, Czech Republic

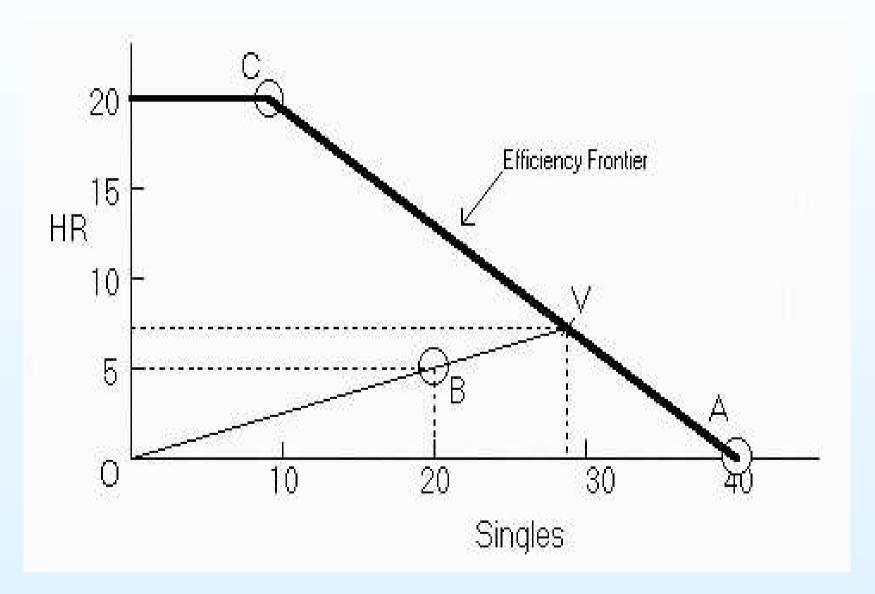
Presentation outline

- DEA methodology
 - Literature review
 - Example
 - Methodology
- Application: Rice farming in Indonesia
 - Stage 1: Efficiency computation
 - Stage 2: Analysis of efficiency scores
 - Tobit model for efficiency
 - Assessment of farm size productivity relation
 - Other factors related to productivity



DEA methodology

- Farrell (1957) concept of multiplicative efficiency: OE=TE*AE
- E. Rhodes (1978) evaluated the educational program for disadvantaged students
- Charnes, Cooper and Rhodes (1978) first paper introducing DEA
- Banker, Charnes and Cooper (1984) variable returns to scale in DEA
- Löthgren and Tambour (1996) summary of returns to scale identification approaches



DEA score - computation

DEA Methodology - summary

- n homogenous DMUs: m inputs and s outputs
- $T \subset \mathbb{R}^{m+s}_+$ is general a production possibility set, where $T = \{(x, y) \mid \text{using inputs } x \text{ outputs } y \text{ are produced} \}$
- Properties of production possibility set:
 - Convexity
 - Inefficiency property free disposal
 - Minimum extrapolation
 - No free lunch
- Efficiency dominance: DMU is dominated when there exist a DMU that can produce the same levels of outputs with less intensive use of inputs

DEA problem

 λ

• Input oriented model:

$$\min_{j,\theta_j,e_j,s_j} \theta_j$$
s.t. $\theta_j x_{ij} - {}_i x \lambda_j - e_{ij} = 0, \quad i = 1, \dots, m;$
 ${}_r y \lambda_j - s_{rj} = y_{rj}, \quad r = 1, \dots, k;$
 $\varphi(\mathbf{1}^T \lambda_j) = \varphi;$
 $\lambda_j, e_j, s_j \ge 0,$

- θ proportional reduction of inputs
- e_j, s_j non-proportional slacks
- λ intensity variable
- $\varphi = 1$ variable returns to scale
- $\varphi = 0$ constant returns to scale

Application: Rice farms

- Motivation:
 - Success of "Green Revolution"
 - Growth of Indonesian rice production over 1950–1980 period
- Goals:
 - Test farm size—productivity relation
 - Townsend, Kirken and Vink (1998), Helfand and Levine (2004): farm size—productivity relationship reconsideration
 - Evaluate impact of intensification program and other factors on farm's efficiency
 - Farm specific factors: labor, fertilizers, ...
 - Economic factors: prices of inputs
 - Environmental factors: location, wet-dry period, ...

Application: Methodology

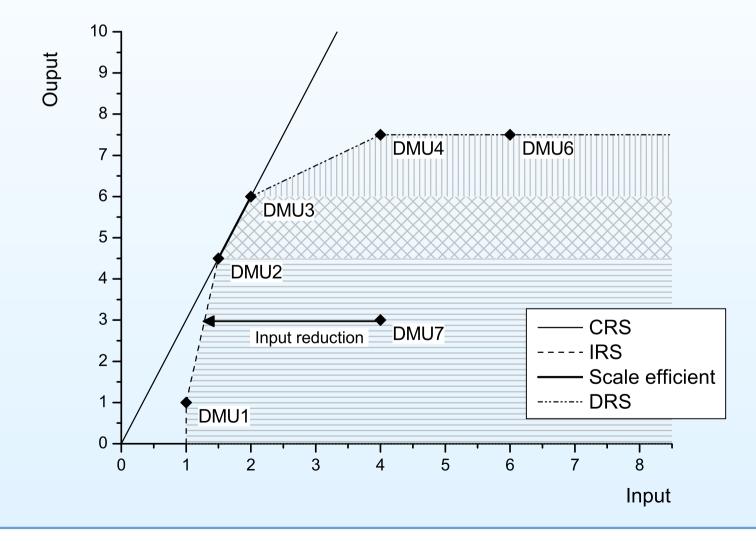
- Stage 1 DEA:
 - Price distortions: Input oriented model
 - Time invariant production frontier
 - Time varying production frontier
- Stage 2 Tobit:
 - Efficiency scores censored variable
 - Efficiency model estimation
 - Random effect model
 - Mundlak's correction used to control for correlation of individual characteristics and unobserved heterogeneity

Application: Results

- Stage 1:
 - High correlation of average DEA score ranking with SFA rankings: 0.7127 – 0.8214
 - Average technical efficiency scores range from 0.60 to 0.77
 - High average scale efficiency 0.90
 - Apx. 70% of farms are located in DRS region of production possibility set
 - Afficiency scores are consistent across models
 - No significant technological change over considered period – Malmquist index
 - Conjecture: Production growth was mainly driven by growth in area used for production
 - High degree of heterogeneity in scores

Application: Results

- Stage 2:
 - HYV employment and sharecropping positively related with efficiency score
 - no significant efficiency benefit from intensification program participation
 - No significant effect of wet period
 - Positive effect of family labor share
 - Size-efficiency relation:
 - "U" shaped relation quadratic
 - Threshold apx. 1.41 ha and apx. 1.9 (using Mundlak's correction)
 - Threshold coincides size of farm in other islands


Conclusions

- Adopt "best-practice" production mixes: 23%–42% proportional reduction of all inputs
- Positive returns of HYV employment
- Adjust farm size pooling plots
- Reform of subsidies system to avoid overuse of inputs – pesticides prices
- Personalization of intensification program

Appendix: Input reduction

• Input orientation in DEA

Appendix: SDEA-SFA correlation

• Spearman rank correlation

	Model type				
	CCR_N	BCC_N	CCR_{LN}	BCC_{LN}	
SFA-SDEA					
FE	0.2534***	0.2448***	-0.0224	-0.0292	
FE_{sp}	0.2115***	0.2399***	-0.0835***	-0.0762**	
SFA-DEA a.					
FE	0.8214***	0.7127***	0.2949***	0.8539***	
FE_{sp}	0.7988***	0.6297***	0.1130***	0.8263***	

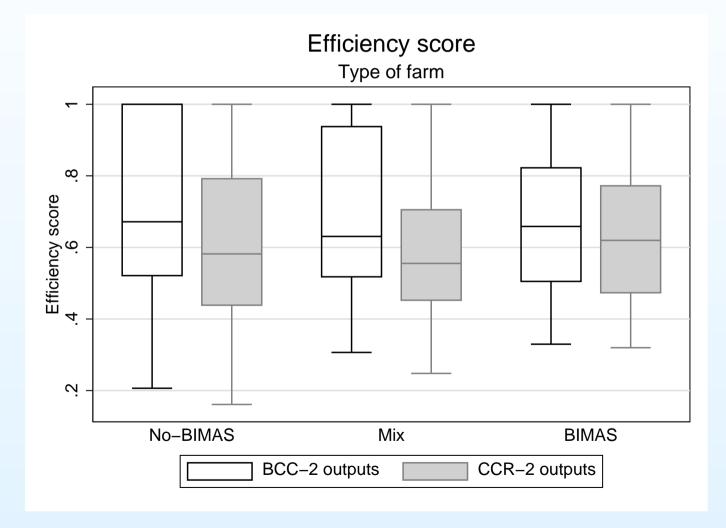
Appendix: Efficiency score summary

• DEA scores:

Model	Obs.	Mean	Std.Dev.	Min	Max
Two–outputs					
χ –CCR	960	0.6199	0.2221	0.1612	1
$\theta-CCR$	960	0.7069	0.1942	0.2795	1
χ –BCC	960	0.7016	0.2216	0.2065	1
$\theta-BCC$	960	0.7757	0.1884	0.3294	1
Scale efficiency	960	0.9126	0.1123	0.4493	1
Pooled DEA two-outputs					
χ –CCR	960	0.5155	0.2024	0.1647	1
$\theta-CCR$	960	0.5866	0.1948	0.2116	1
χ –BCC	960	0.5913	0.2012	0.2309	1
$\theta-BCC$	960	0.6533	0.1988	0.2591	1
Scale efficiency	960	0.9003	0.1183	0.3618	1

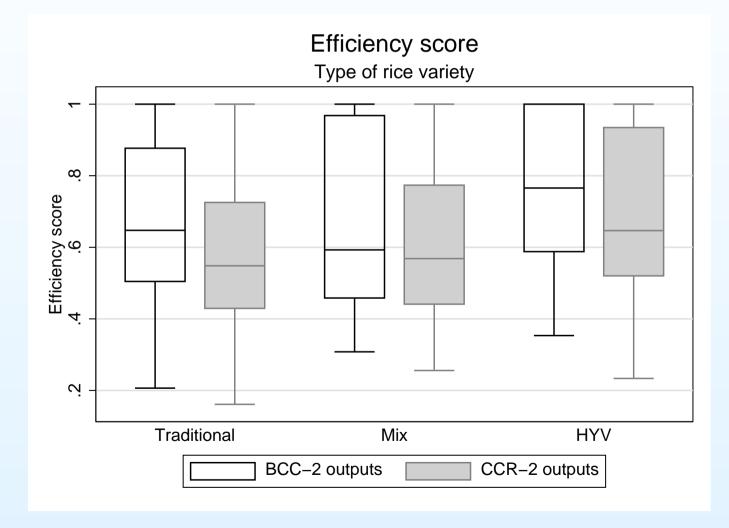
Appendix: Analysis of scores

Returns to scale


Model	DRS	CRS	IRS
One-output	66%	12%	22%
Two-outputs	62%	16%	22%
Pooled two-outputs	77%	5%	18%
Thailand*	19%	32%	49%
Bangladesh**	63%	16%	21%

* From Krasachat (2004), ** From Wadud and White (2000)

Appendix: Productivity factors


Intensification program participation

Appendix: Productivity factors

Modern variety employment

Appendix: Technical and efficiency change

Malmquist Index Summary Of Annual Means

Year	Eff.ch.	Tech.eff.ch.	Prod.ch.	Sc.eff.ch.	TFP Ch.
2	0.947	1.036	0.980	0.967	0.981
3	1.148	0.758	1.042	1.101	0.870
4	0.851	1.063	0.894	0.952	0.905
5	1.066	1.147	1.030	1.035	1.223
6	1.045	0.960	1.046	0.999	1.004
Mean	1.006	0.983	0.997	1.010	0.989

Appendix: Estimation details

• Tobit:

- $\chi_{ij}^* = \beta^T x + \nu_i + \epsilon_{ij}$, where χ_{it} is censored variable
- \circ random effects, ν_i , are iid $N(0, \sigma_{\nu}^2)$ and ϵ_{it} are iid $N(0, \sigma_{\epsilon}^2)$ independently of ν_i
- Unobserved heterogeneity modelling:
 - Mundlak (1978): unobserved heterogeneity can be modelled as a function of means of included regressors
 - $\circ \ \nu_i = \bar{\beta} \bar{x}_i + \alpha_i$
 - α_i is a part of farm's unobserved heterogeneity and uncorrelated with regressors
 - \bar{x}_i is vector of farm *i* means for individual regressors x_i over the observed period

Appendix: Parametric methods

- Kumbhakar and Lovell's (2000) review
- COLS:
 - Estimate: $\ln(y_j) = \beta_0 + \sum_{k=1}^m \ln(x_{jk})\beta_j u_j$
 - Correct OLS residuals: $-\hat{u}_j^* = \hat{u}_j \max_j \{\hat{u}_j\}$
 - Calculate efficiency: $TE(COLS)_j = \exp(-\hat{u}_j^*)$
- SFA:
 - Estimate: $\ln(y_j) = \beta_0 + \sum_{i=1}^m \beta_i \ln(x_{ij}) + v_j u_j$,
 - u_j represents non–negative technical inefficiency
 - v_j is the symmetric two sided random shock component.

