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Abstract
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symmetric error is incorporated into the model and the corresponding stochas-
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1 Introduction

Data envelopment analysis (DEA) involves an alternative principle for extracting

information about a population of observations, so called decision making units

(DMUs), that are described by the same quantitative characteristics. This is reflected

by assumption that each DMU uses the same set of inputs to produce the same set of

outputs, but the inputs are consumed and outputs are produced in various amounts.

DEA and Stochastic Frontier Analysis (SFA) models have been developed for the

purpose of production frontier search. DEA involves an alternative approach to SFA

for information extraction from the population observations of decision processes.

The DEA approach is a nonparametric approach to estimating the production frontier

and therefore DEA does not require specification of the production function form.

DMUs are directly compared against a peer or combination of peers. In contrast

to parametric approaches for information extraction, the objective of the DEA is to

calculate a linear (piecewise linear) frontier determined by a set of Pareto-efficient

DMUs. This frontier is used to calculate the relative measure (among the elements

of analyzed DMU set) of DMU’s technical efficiency.

The measurement of input and output values is the subject to errors and noise.

Also, the analyzed production sector may face different shocks. The noise in data usu-

ally leads to mistakes in production frontier specification and efficiency scores. The

dilemma of efficiency evaluation approach choice depends on the trade off between

the minimal specification that favors DEA and handling of stochastic error in mea-

suring DMU efficiency that favors SFA. To compete with SFA in error handling, the

stochastic data envelopment analysis (SDEA) approach was developed by considering

the value of inputs and outputs as random variables in the SDEA approach.

Present SDEA approaches lead to chance constrained optimization problems that

consume extensive amount of computational time for the optimal solution search even

for the simple stochastic models. I continue the chance constrained programming

tradition in which random disturbances are incorporated in inputs and outputs on

the assumption that the probabilistic distribution of disturbances is known. In this

paper, two classes of efficiency dominance are defined. According to the dominance

definitions the two classes of stochastic models are derived. In the further model
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development proportional input reduction and output augmentation is introduced in

the models and by use of the simplified error structure and linearization methods the

linear deterministic models are derived. The linearization allows to use the interior

point methods for linear programming problems that are capable to solve large size

problems using significantly reduced amount of computational time in comparison

with solving chance constrained optimization problems.

The following section reviews the literature on DEA and SDEA. In the third sec-

tion usual notation is introduced. The fourth section defines production possibility set

properties that will be used to construct stochastic models in the following sections.

Two model classes will be derived according to different approaches of stochastic error

inclusion. Subsequently, the model’s error structure is presented and incorporated

in the model and the derivation of linearized models is described. This is followed

by the introduction of the efficiency measure that is used to construct the oriented

models that are linearized. The last section proposes numerical methods that can be

used to solve such models and introduces my solver that can be used to solve these

models when applying these models for specific analysis.

2 Literature review

As Charnes, Cooper, Lewin and Seiford (1994) explained in their introduction, the

story of data envelopment analysis begun with Edwardo Rhodes’s dissertation, which

was the basis for the later published paper by Charnes, Cooper and Rhodes (1978).

In his dissertation, E. Rhodes analyzed the educational program for disadvantaged

students in the USA. He compared the performance of students from participating

and not participating schools in the program. The performance was recorded in terms

of inputs and outputs, e.g.:“Increased self-esteem” (measured by psychology tests) as

output and the time spent by mother reading with child as input. The following work

on efficiency evaluation of multiple inputs and outputs technology led to the paper

by Charnes et al. (1978), where the CCR model for DEA was formulated.

The presented CCR model is capable of handling only the technology with con-

stant returns to scale. This fact is reflected in the shape of the production possibility

frontier when the frontier is formed by a single ray. The DMU is evaluated as efficient
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if it is an element of production possibility frontier. To handle the variable returns to

scale the CCR model was extended by Banker, Charnes and Cooper (1984). Since the

BCC model’s frontier is a piecewise linear set, Banker et al. (1984) defined weak effi-

ciency (weak efficient DMU has nonzero slacks) and efficiency (efficient DMU has zero

slacks). Further, only the efficient DMUs are elements of the estimated production

possibility set frontier in the framework of the BCC model.

Since 1978, over 1000 articles, books and dissertations have been published1 and

DEA theory and applications have rapidly extended. As many applications suggest,

DEA can be a powerful tool when used wisely. Two capabilities that make DEA a

powerful tool are capability of handling multiple inputs and outputs models and that

these inputs and outputs can have different measurement units. For example, input

could be in units of lives saved or it could be in units of dollars without requiring an a

priori tradeoff between the two. This property allows expansion of DEA methodology

into very different production sectors. To examine the efficiency of hospitals or health

care centers is one very popular application of DEA, e.g. a recent study by Halme

and Korhonen (1999) examines the dental care units or the study by Byrnes and

Valdmanis (1989) where 123 US hospitals were covered. Other applications of DEA

methodology cover industries like air transportation (Land, Lovell and Thore 1993),

fishing (Walden and Kirkley 2000) and banking (Ševčovič, Halická and Brunovský

2001).

The study by Byrnes and Valdmanis (1989) continued the expanding interest in

health care applications of DEA that occurred in the beginning of the 1980’s. Many

earlier studies of cost efficiency calculated only the technical-efficiency of DMUs and

this study also examined the decomposition of overall efficiency into its component

parts. This means that Byrnes and Valdmanis (1989) ascertained how efficiently

hospitals are using each of the inputs or outputs in comparison to other competitors

from the DMUs set. Authors also mentioned how the managers can utilize the in-

formation. Their approach shows the variability of information that can be gathered

using the DEA model.

The expanding number of papers devoted to DEA helped to identify the limita-

1According to Emrouznejad (1995-2001) homepage.
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tions of the DEA approach. An analyst should keep these limitations in mind when

choosing whether or not to use DEA. DEA is good at estimating the “relative” effi-

ciency of a DMU but it converges very slowly to “absolute” efficiency. In other words,

DEA reveals how well DMU is doing compared to other DMU but not compared to

a “theoretical maximum.” This is the result of the analyst’s limitation in knowledge

of the true production function. Figure (1) shows the difference between the true

production frontier and the estimated production frontier.

Since DEA is an extreme point technique, noise (even symmetrical noise with zero

mean) such as measurement error can cause significant problems, because the frontier

is sensitive to these errors.

As the consequence of this, theoretical attempts to incorporate these errors were

made. The SDEA works are based on the theoretical paper by Land et al. (1993),

where the authors used their new models to examine the efficiency of the same school-

ing program for disabled scholars as in Charnes et al. (1978). In Land et al. (1993), the

authors offered the prospect of stochastic data envelopment analysis and constructed

their own model (LLT model). They introduced the stochastic component to DEA

and created chance constrained problems by introducing the variability to outputs

that is conditional on inputs. This simply means that only outputs were taken as

normally distributed random variables. After the stochastic optimization problems

were created, Land et al. (1993) transformed these problems to their deterministic

equivalents, which allowed them to determine the efficient DMUs.

Olesen and Petersen (1995) presented a different approach to incorporate the

stochastic component into DEA. Olesen and Petersen (1995) assumed that ineffi-

ciency of DMU can be decomposed into true inefficiency and disturbance term. The

approaches of Land et al. (1993) and Olesen and Petersen (1995) to SDEA are com-

pared by Olesen (2002) and the weaknesses of both approaches are identified. The

LLT model is criticized because it does not account for all the correlations that can

occur in disturbances. Olesen (2002) critique the OP-model proposed by Olesen and

Petersen (1995) because the OP-model ignores the fact that a convex combination of,

e.g., two i.d. random input output vectors from two DMUs has a lower variance than

the random vectors themselves, except for the case where the input output vectors are

5



perfectly correlated. After Olesen (2002) stressed the weaknesses of both the models,

he proposed a model that combines attractive features of the LLT and OP models.

Straightforward remedy for the OP model is to take the union of confidence regions

for any linear combination of the stochastic vectors themselves rather than using a

piecewise linear envelopment of the confidence regions. Olesen (2002) implemented

this idea and derived the combined chance constrained model in his paper.

The theoretical paper by Huang and Li (n.d.) sketches stochastic models with

the possibility of variations in inputs and outputs. Huang and Li (n.d.) defined

the efficiency measure of a DMU via joint probabilistic comparisons of inputs and

outputs with other DMUs which can be evaluated by solving a chance constrained

programming problem. By utilizing the theory of chance constrained programming,

deterministic equivalents are obtained for both situations of multivariate symmetric

random disturbances and a single random factor in the production relationships. The

linear deterministic equivalent and its dual form are obtained via the programming

theory under the assumption of the single random factor. An analysis of stochastic

variable returns to scale is developed using the idea of stochastic supporting hyper-

planes. The relationships of the presented SDEA models with some conventional

DEA models are also discussed.

The paper by Gstach (1998) shows that there are research directions in which

the future developments on DEA and SDEA can be driven. Gstach (1998) addresses

the issue that the outcome of a production process might not only deviate from a

theoretical maximum due to inefficiency, but also due to non-controllable errors. As

is often the case, this raises the issue of reliability of DEA in noisy environments. The

author proposes to assume an i.i.d. data generating process with a bounded noise

component. This assumption makes the approach that mixes the parametric and

non-parametric approach to production frontier estimation feasible. Gstach (1998)

propose using DEA to estimate a pseudo frontier (nonparametric shape estimation)

and then apply a maximum likelihood-technique to the DEA-estimated efficiencies to

estimate the scalar value by which this pseudo-frontier must be shifted downward to

get the true production frontier (location estimation).

At the end of this review, the paper that is devoted to DEA models computational
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problems is presented. The major problems associated with solving the DEA models

are the analysis of large set of DMUs and the solutions with zero elements. The

analysis of large data set leads to large size optimization problems that can be costly

to solve. The solutions with zero elements cause problems when these solutions are

interpreted as inputs and outputs shadow prices. Gonzales-Lima, Tapia and Thrall

(1996) present the primal-dual interior-points computational methods as the methods

that significantly improve the reliability of solution in comparison to simplex methods.

The interior-points methods maximize the product of the positive components among

solutions, which means that the number of zero components of the optimal solution

is minimized. Due to this solution’s property it is easier to interpret the DEA models

results.

3 Notation

In this section, the notation and definitions are introduced which are introduced will

be used to construct the stochastic DEA models in the next section. The notation

in this paper coincides with the notation used in papers by Li (1998) and Huang

and Li (n.d.). The task is to analyze the set of DMUj where 1 ≤ j ≤ n. Each

of the DMUs is described by the vector x̃j ∈ Rm
+ , x̃j = (x̃1j, . . . , x̃mj)

T of m input

amounts that are used to produce s outputs in amounts described by vector ỹj ∈ Rs
+,

ỹj = (ỹ1j, . . . , ỹsj)
T . These vectors are aggregated to matrices of inputs and outputs

and the following matrix notation will be used:

matrix of inputs X̃ = (x̃1, . . . , x̃n)

ith row of ’input’ matrix X̃ ix̃ = (x̃i1, . . . , x̃in)T , i = 1, . . . , m

matrix of expected inputs X̄ = (x̄1, . . . , x̄n)

ith row of expected ’input’ matrix X̄ ix̄ = (x̄i1, . . . , x̄in)T , i = 1, . . . , m

matrix of outputs Ỹ = (ỹ1, . . . , ỹn)

rth row of ’output’ matrix Ỹ rx̃ = (ỹr1, . . . , ỹrn)T , r = 1, . . . , s

matrix of expected outputs Ȳ = (ȳ1, . . . , ȳn)

rth row of expected ’output’ matrix Ȳ rȳ = (ȳr1, . . . , ȳrn)T , r = 1, . . . , s
The additional notation is introduced in the following section where the error

structure is described.
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4 Stochastic efficiency dominance

In the stochastic framework the DMUs are characterized by distributions moments.

The production possibility set is defined in terms of inputs and outputs means. In

further model development, the second moments will be used in the transformation

from the chance constrained problem to its deterministic equivalent.

The true production possibility set can be constructed using the true production

function. In nonparametric DEA methodology, this function is not known, therefore

the general production possibility set is defined and the set of properties that the

production possibility set should fulfill is postulated.

Definition 1. General stochastic production possibility set T ⊂ Rm+s
+ is defined as

follows: T = {(x̃, ỹ) | using inputs x̃ outputs ỹ can be produced}

When constructing the stochastic production possibility set T using the DMUj ,

j = 1, . . . , n, T should have these properties:

Property 1. Convexity: If (x̃j, ỹj) ∈ T, j = 1, . . . , n and λ ∈ Rn
+,

∑n
j=1 λj = 1 ⇒

(X̃λ, Ỹ λ) ∈ T.

Property 2. Inefficiency property: If (x̄, ȳ) ∈ T and x ≥ x̄, then (x, ȳ) ∈ T.

If (x̄, ȳ) ∈ T and y ≤ ȳ then (x̄, y) ∈ T.

The second property of production possibility set means that less output can be

produced with the same inputs. It reflects the situation when some amount of inputs

is wasted in production production process.

Property 3. Minimum extrapolation: T is the intersection of all sets satisfying

convexity and inefficiency property and subject to that each of the observed vectors

(x̃j, ỹj) ∈ T, j = 1, . . . , n.

Set T0 = {(x̃, ỹ) | x̃ ≥ X̃λ, ỹ ≤ Ỹ λ, λ ≥ 0} satisfies the aforementioned properties.

T0 is the stochastic generalization of the production possibility set of constant returns

to scale production function as it was used by Charnes et al. (1978) in derivation of

the CCR model. Similarly, the set T1 = {(x̃, ỹ) | x̃ ≥ X̃λ, ỹ ≤ Ỹ λ, eT λ = 1, λ ≥ 0}
also satisfies the properties postulated for the stochastic production set. Set T1 is
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the production possibility set appropriate for production technology with variable

returns to scale. Further, set T1 and its modifications will be used to derive models

with variable returns to scale.

Generally, the parameterized production possibility set Tϕ can be defined as fol-

lows: Tϕ = {(x̃, ỹ) | x̃ ≥ X̃λ, ỹ ≤ Ỹ λ, ϕ(eT λ) = ϕ, λ ≥ 0}. Tϕ covers the cases of T1

and T0 for choice of parameter ϕ, ϕ = 0, 1.

Next, the concept of efficiency used in DEA is based on following efficiency defi-

nition:

Definition 2. Relative Efficiency: A DMU is to be rated as efficient on the basis of

available evidence if and only if the performances of other DMUs does not show that

some of its inputs or outputs can be improved without worsening some of its other

inputs or outputs.

The efficient DMUs identification in the set of all DMUs is done through the

efficiency dominance relation. In this section, two classes of efficiency dominance

will be defined. The first definition will be used to create the almost 100% chance

constrained models. The second dominance definition will be used to define the

chance constrained models. These models will be derived in the following sections,

where the theorems that relate the efficiency dominance definition and constructed

models will be mentioned.

The point in the production possibility set Tϕ is called the efficient point of the

production possibility set if there is not another production point that produces more

of output without consuming more input, or consumes less of input without producing

less output. This leads to the following efficiency domination definition among the

DMUs:

Definition 3. Efficiency dominance: DMUj is not dominated in the sense of effi-

ciency if @(x∗, y∗) ∈ Tϕ such that x∗ ≤ xj or y∗ ≥ yj with at least one strict inequality

for input or output components.

This definition demonstrate the efficiency concept of DEA and is used to derive

the deterministic models and there is no possibility of the violating of the produc-

tion possibility set properties. In the deterministic environment, the non-dominated
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elements of the production possibility set frontier set up the production envelopment

surface. The Figure (1) shows the set of DMUs divided into the efficient and inefficient

DMUs. The efficient DMUs are used to set up the estimate of the production possi-

bility frontier. The elements of the the production possibility envelopment estimate

dominate the other elements of the production possibility set.

In the stochastic framework, the efficiency domination violations are allowed with

the probability α, 0 ≤ α ≤ 1.2 In the chance constrained programming methodology

the term 1−α is interpreted as the modeler’s confidence level and α is interpreted as

the modeler’s risk. The risk equals to the probability measure of the extent to which

specific conditions are violated.

In the almost 100% confidence approach, the efficiency dominance can be violated

with probability α and the production possibility constraints are almost certainly

not violated. In the chance constrained model, it is allowed to violate the constraints

specifying the production possibility set with probability α. For the case of the almost

100% confidence chance constrained approach, let’s consider the case where Pareto-

efficiency can be violated due to random errors and therefore the stochastic efficiency

of point is defined as follows:

Definition 4. Stochastic efficiency of point in set Tϕ: (x̃∗, ỹ∗) ∈ Tϕ is called α–stochastically

efficient point associated with Tϕ ⇔ if the analyst is confident that (x̃∗, ỹ∗) is Pareto-

efficient with probability 1− α in the set Tϕ.

This definition means that point (x̃∗, ỹ∗), considered as efficient, is dominated (in

the sense of efficiency dominance) by any other point in Tϕ with a probability less or

equal to α. Using the definition of efficient point the efficiency of DMUj is defined as

follows:

Definition 5. Stochastic efficiency of DMUj : DMUj is α–stochastically efficient in

set Tϕ ⇔ (x̃j, ỹj) is point associated with DMUj and (x̃j, ỹj) ∈ Tϕ is α–stochastically

efficient production point associated with Tϕ.

These definitions and aforementioned properties of the set Tϕ straightforwardly

imply that for efficient DMUj and for any λ such that ϕ(eT λ) = ϕ, λ ≥ 0 the

2In the following text it is assumed 0.5 ≤ α ≤ 1.
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expression

Prob(X̃λ ≤ x̃j, Ỹ λ ≥ ỹj) ≤ α

holds with at least one strict inequality in input–output constraints.

The deterministic and stochastic approaches are compared from the view of the

shape of efficient points set to demonstrate the difference between them. Figure (1)

shows the deterministic frontier and compares it to the true production possibility

frontier. We observe two inefficient DMUs, namely DMU #4 and DMU #5. The

solid piecewise linear line is the unknown true production possibility frontier and the

dashed line is DEA estimate of the production possibility frontier. At Figure (2) the

same DMUs are pictured and the set of efficiency dominant DMUs is pictured as the

grey shaded area. Comparison of Figures (1) and (2) shows that the deterministic

production possibility set frontier is a subset of the stochastic possibility set frontier.

Due to this fact more DMUs can be evaluated as efficiency dominant in the stochastic

framework than in the deterministic. At Figure (2) this is the case for the DMU #4

that became an efficient unit in the stochastic framework.

The second class of stochastic models considered in this paper is the case where

production possibility set constraints can be violated with prescribed probability. In

this approach, the modeler’s risk relates to the risk that the dominating point is not

element of the production possibility set due to the presence of noise in the data.

This means that the production point can be dominated by the point that violates

the production possibility set constraints. For the purpose of chance constrained

models derivation, the efficiency dominance is defined in the following way:

Definition 6. Chance constrained efficiency: Point (xij, yrj) is not dominated in the

sense of chance constrained efficiency if @ (x∗, y∗) such that Prob(x∗i ≤ xij) ≥ 1 − α

or Prob(y∗r ≥ yrj) ≥ 1− α, 0.5 ≤ α < 1, j = 1, . . . , n;

i = 1, . . . , m; r = 1, . . . , s holds with at least one strict inequality for input or output

components.

Similarly as in the case of α-stochastic dominance, the production point is efficient

in the sense of chance constrained efficiency defined by definition (6) when this point
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is not dominated by any other point that fulfills each constraint of the set Tϕ with

probability at least 1 − α. To guarantee the convexity of the set that is used for

search of dominating points the constraint 0.5 ≤ α < 1 is applied, therefore the

chance constrained efficiency of DMUj is defined as follows:

Definition 7. Chance constrained efficiency of DMUj : DMUj is chance constrained

efficient with probability α, 0.5 ≤ α < 1 in set Tϕ ⇔ (x̃j, ỹj) is point associated with

DMUj and (x̃j, ỹj) ∈ Tϕ is chance constrained efficient production point associated

with Tϕ.

In the following sections, the α-stochastic efficiency definition will be used to

derive almost 100% chance constrained problems. By the specifications of projection

direction on the envelopment surface these models will then be oriented and linearized.

The same process can be applied to models according to chance constrained efficiency

definition, therefore only final version of chance constrained models will be presented.

4.1 Stochastic model

In this section, the derivation of the almost 100% confidence chance constrained

problem is reviewed. The derived model is the stochastic equivalent of the additive

DEA model and will be the basis for the further theoretical development of SDEA

models. In the following subsection, the specific assumptions about the error structure

in the data are made and the stochastic model is transformed to its deterministic

equivalent.

Now, from the set properties it follows that:

{X̃λ ≤ x̃j, Ỹ λ ≥ ỹj} ⊂ {eT (X̃λ− x̃j) + eT (ỹj − Ỹ λ) < 0}3

and using probability properties following inequality is derived:

Prob(X̃λ ≤ x̃j, Ỹ λ ≥ ỹj) ≤ Prob(eT (X̃λ− x̃j) + eT (ỹj − Ỹ λ) < 0).

Therefore for λ such that ϕ(eT λ) = ϕ and λ ≥ 0 the condition

Prob(eT (X̃λ− x̃j) + eT (ỹj − Ỹ λ) < 0) ≤ α is a sufficient condition for DMUj to be

α–stochastically efficient.

3The inequality type change is due to the additional restriction that

{X̃λ ≤ x̃j , Ỹ λ ≥ ỹj} holds with at least one strict inequality.
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Using the sufficient condition for α–stochastical efficiency of DMUj, Cooper,

Huang, Lelas, Li and Olesen (1998) constructed the following almost 100% confi-

dence chance constrained problem (in matrix notation) for evaluating the efficiency

of DMUj , j = 1, . . . , n:

max
λ

Prob(eT (X̃λ− x̃j) + eT (ỹj − Ỹ λ) < 0)− α (1)

s.t.

Prob(ix̃λ < x̃ij) ≥ 1− ε, i = 1, . . . , m;

Prob(rỹλ > ỹrj) ≥ 1− ε, r = 1, . . . , s;

ϕ(eT λ) = ϕ,

λ ≥ 0,

where ε is non–Archimedean infinitesimal quantity.4 The optimal solution of problem

(1) is related with stochastic efficient point by using the following theorems:

Theorem 1. Let DMUj be α-stochastically efficient. The optimal value of objective

function in the chance constrained programming problem (1) is less than of equal

zero.

Theorem 2. If the optimal value objective functional of problem (1) is greater than

zero, then DMUj in not α-stochastically efficient.5

The Theorem (2) implies that if the maximum value of the chance functional

Prob(eT (X̃λ− x̃j)+ eT (ỹj − Ỹ λ) < 0) exceeds α, then DMUj is not α–stochastically

efficient. The value of chance functional of additive model represented by the problem

(1) can be used as the simplest efficiency measure when interpreted as the sum of

input excess and output slack. In the following sections, the sophisticated efficiency

measures will be introduced.

4This means that ε is less than any positive real number. According to Charnes et al. (1994):

”Computational Aspects of DEA”, ε < minj=1,...,n 1/
∑m

i=1 xij is selected in the calculations of these

models.
5These theorems are corollaries of Theorem (3) by Cooper et al. (1998).
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4.2 Symmetric shock model

In this subsection, the single symmetric error structure that allows to transform model

from chance constrained problem to the linear programming problem is introduced.

In the single factor symmetric model, errors in all variables are driven by single

symmetric shock ε. Let’s consider the structure of m inputs and s outputs of DMUj

in the following form:

x̃ij = x̄ij + aijε i = 1, . . . , m;

ỹij = ȳij + bijε, r = 1, . . . , s;

where ε follows normal distribution with E(ε) = 0, V ar(ε) = σ2
ε .

6 To simplify the

matrix description of the shock effects to DMUs the following vector notation is

introduced:
aj = (a1j, . . . , amj)

T , bj = (b1j, . . . , bsj)
T , j = 1, . . . , n;

ia = (ai1, . . . , ain), rb = (br1, . . . , brn), i = 1, . . . , m, r = 1, . . . , s;
and these vectors are aggregated to construct the following matrices of input and

output variations:

A = (a1, a2, . . . , an), B = (b1, . . . , bn).

Using properties of normal distribution it is derived that ix̃λ − x̃ij is distributed

N(ix̄λ−x̄ij; ((iaλ−aij)σε)
2) and (rỹλ−ỹrj) ∼ N(rȳλ−ȳrj; ((brj−rbλ)σε)

2). Applying

the inverse of cumulative distribution function Φ(α) the constraints and objective

function in the almost 100% confidence chance constrained problem (1) are rewritten

and the following non-stochastic equivalent is derived:

minλ eT (X̄λ− x̄j) + eT (ȳj − Ȳ λ)+

+ | eT (Aλ− aj) + eT (b̄j − B̄λ) | σεΦ
−1(α)

s.t.

ix̄λ ≤ x̄ij+ | iaλ− aij | σεΦ
−1(ε), i = 1, . . . , m,

ȳrj ≤ rȳλ+ | brj − rbλ | σεΦ
−1(ε), r = 1, . . . , s,

ϕ(eT λ) = ϕ,

λ ≥ 0.

(2)

6σ2
ε is used for purpose of units of measurement scaling. The units of measurement rescaling is

used when numerical problems with tiny diagonals of the input-output variance matrices occurs.
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To linearize constraints the absolute value terms from constraints in problem

(2) are removed. The absolute values term in constraint are decomposed into the

difference of two positive numbers and into the objective function the cumulative

term ε(
∑s

r=1(q1r + q2r)+
∑m

i=1(h1i +h2i)) is added. This constraint modification does

not affect the optimal solutions of problem (2). Therefore, problem (2) is equivalent

to the following problem with linear constraints:

minλ,qkr,hki
eT (X̄λ− x̄j) + eT (ȳj − Ȳ λ)+

+ | eT (Aλ− aj) + eT (bj − B̄λ) | σεΦ
−1(α)+

+ε(
∑s

r=1(q1r + q2r) +
∑m

i=1(h1i + h2i))

s.t.

ix̄λ ≤ x̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλ− aij = h1i − h2i, i = 1, . . . , m,

ȳrj ≤ rȳλ + (q1r + q2r)σεΦ
−1(ε),

brj − rbλ = q1r − q2r, r = 1, . . . , s,

ϕ(eT λ) = ϕ,

λ ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.

(3)

In the next step, the absolute value from the objective function is removed. The

inverse of cumulative distribution function Φ(α) takes positive or negative value, to

account for this factor let’s define δ such that:

δ =





−1 if α < 0.5;

0 if α = 0.5;

1 if α > 0.5.

The absolute value term in the objective function is the sum of the absolute value

terms in constraints; therefore, the decomposition that was used in constraints is

just substituted in the objective function. Thus as in Li (1998), the absolute value

terms are eliminated from objective function and the following problem with linear
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objective function is obtained:

minλ,qkr,hki
eT (X̄λ− x̄j) + eT (ȳj − Ȳ λ)+

+δ(eT (Aλ− aj) + eT (bj − B̄λ))σεΦ
−1(α)+

+ε(
∑s

r=1(q1r + q2r) +
∑m

i=1(h1i + h2i))

s.t.

ix̄λ ≤ x̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλ− aij = h1i − h2i, i = 1, . . . , m,

ȳrj ≤ rȳλ + (q1r + q2r)σεΦ
−1(ε),

brj − rbλ = q1r − q2r, r = 1, . . . , s,

ϕ(eT λ) = ϕ,

λ ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.

(4)

Problem (4) is known as the envelopment formulation of the DEA model, because the

optimal solution identifies the projected point on to envelopment surface for DMUj.

Now, define e as the vector of ones and the dual problem (5) to primal problem (4),

which is a modification of Li (1998) is stated as follows:

maxµ,ν,η,ω,ψj
µT ȳj − νT x̄j − ηT bj − ωT aj − ϕψj

s.t.

µT ȳl − νT x̄l − ηT bl − ωT al − ϕψj ≤ 0, l = 1, . . . , n;

−σεΦ
−1(ε)µ + η ≥ −σε(Φ

−1(ε) + ε)e− δσεΦ
−1(α)e,

−σεΦ
−1(ε)µ− η ≥ −σε(Φ

−1(ε) + ε)e + δσεΦ
−1(α)e,

−σεΦ
−1(ε)ν − ω ≥ −σε(Φ

−1(ε) + ε)e− δσεΦ
−1(α)e

−σεΦ
−1(ε)ν + ω ≥ −σε(Φ

−1(ε) + ε)e + δσεΦ
−1(α)e,

µ ≥ e,

ν ≥ e,

η, ω, ψj unconstrained.

(5)

For the DMUj represented by point (x̃j, ỹj), the stochastic hyperplane:

Prob(cT x̃j + dT ỹj + fj ≤ 0) = 1− ε

is supporting hyperplane for Tϕ at (x̃j, ỹj) if and only if

cT x̃j + dT ỹj + fj + Φ−1(ε)σε | cT aj + dT bj |= 0 (6)
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and for ∀ (x̃, ỹ) ∈ Tϕ : cT x̃ + dT ỹ + fj + Φ−1(ε)σε | cT aj + dT bj |≥ 0. (7)

The derived problem (5) is known as the multiplier problem because the optimal

solutions (µ∗j , ν
∗
j , η

∗
j , ω

∗
j , ψ

∗
j ), j = 1, . . . , n, for the set of problems (5) set up the

supporting hyperplanes used for production possibility set frontier estimation. The

unique optimal solution (µ∗j , ν
∗
j , η

∗
j , ω

∗
j , ψ

∗
j ) of problem (5) such that

µ∗j
T (bj − bk) + ν∗j

T (aj − ak)− Φ−1(ε)σε(| µ∗j T bj − ν∗j
T aj | − | µ∗j T bk − ν∗j

T bk |) ≥ 0,

for k = 1, . . . , n, identifies the almost 100% confidence hyperplane

Prob(µ∗j
T ỹj − ν∗j

T x̃j + f ∗j ≤ 0) = 1− ε, where

f ∗j = −η∗j
T bj − ω∗j

T aj − ϕψ∗j + Φ−1(ε)σε | µ∗j T bj − ν∗j
T aj |.

The indentified almost 100% confidence hyperplane is supporting hyperplane to Tϕ at

DMUj. In case without the unique solution of problem (5) the supporting hyperplane

for Tϕ at (x̃j, ỹj) is not uniquely identified. The supporting hyperplanes for analyzed

DMUs are used to construct the estimate of the production possibility frontier is

constructed. In the following sections, the sign of fj will be related with the returns

to scale.

5 Efficiency measure

The solution of problems (4) and (5) consists of a projected point and the supporting

hyperplane. The optimal solution of envelopment problem (4) identifies the projected

point (x̂j, ŷj) = (X̄λ∗j , Ȳ λ∗j) on the supporting hyperplane adjacent to DMUj. The

point (X̄λ∗j , Ȳ λ∗j) is the optimal solution of the envelopment problem (4) and it is

element of the hyperplane obtained as the solution of the multipliers problem (5). In

this section, the projected point and envelopment defining hyperplane will be utilized

to create the inefficiency measure for the DMUj.

For the purpose of a simple inefficiency measure creation, the distance measure of

a discrepancy between the expected and projected point can be used. Therefore the

simple inefficiency measure is (x̂j, ŷj)− (x̄j, ȳj). This discrepancy measure expresses

the difference between the efficient frontier represented by the projected point (x̂j, ŷj)

and the present position of DMUj. Starting from (x̄j, ȳj) different projection paths

on the corresponding part of envelopment surface can be followed. Therefore various
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projected points and inefficiency measures can be created. The choice of projection

path means specification of the type of strategy that must to be used to enhance

efficiency. In the following derivation of efficiency measure, directions of lowering

inputs and increasing in outputs will be distinguished.

First, for inputs of DMUj let’s denote x̄j − X̄λ = ej and following the path −ej

the inputs can be decreased and the projected point is moved towards the production

possibility frontier. This projection direction is pictured in Figure (5) as the input

reduction direction. The point DMU5i is the input oriented projection of DMU#5.

When the path of input reduction is used in the construction of point projected on

the production possibility frontier the input oriented DEA model is created.

Similarly, the DEA output oriented model is created when for projection on the

production possibility frontier the path sj = Ȳ λ − ȳj is used. The path sj projects

DMUj on to production possibility frontier in outputs augmenting direction. This

projection point is shown on Figure (5) as the point DMU5o.

Next, to determine the maximal scale effects in inputs reduction or outputs aug-

mentation, the projection paths sj, ej are decomposed to a proportional increase

(decrease) of output (input) and residual as follows:

sj = ρȳj +δj
s, ej = γx̄j +δj

e, where proportional increase of outputs ρ and proportional

decrease of inputs γ are defined as follows:

ρ = minr=1,...,s
ŷrj − ȳrj

ȳrj

≥ 0,

γ = mini=1,...,m
x̄ij − x̂ij

x̄ij

≥ 0,

(8)

and δj
e ≥ 0, δj

s ≥ 0, j = 1, . . . , n.7

Next, the notation of Ali and Seiford (1993) is used to define new variables for

the proportional part of projection. The new variable for output oriented model are

defined as φ = 1 + ρ and for input oriented model θ = 1 − γ. From construction of

the scaling parameters, the optimal value of θ (φ for input output problem) satisfies

7Note that at least one component of each δ is zero, because of projection on to the production

possibility frontier.
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θ ≤ 1 (φ ≥ 1). The maximal output scale effect is identified by maximal φ and the

maximal input reduction the minimal θ.

For the identification of scale effects and efficiency evaluation two stage models are

constructed. In the first model stage, the maximal φ or minimal θ is found to identify

the maximal proportional effect. In the second stage of modelling, the identified

scale effect is utilized to optimize for envelope distance and the DMU’s efficiency is

evaluated. Thus, in the first stage the x̄j is replaced with θx̄j in constraints and the

maximal input reduction is identified by the minimal value of θ. The optimal solution

to the first stage for DMUj is denoted as θ̂j. Then the θ̂j is used in the second stage

where the x̄j is replaced by θ̂jx̄j in problem (1) and the efficiency score is evaluated.

Similarly, for the input oriented model the ȳj is replaced by φȳj and the maximal

output augmentation is identified by φ̂j. As in the input oriented case, the efficiency

of the DMUj is evaluated by model where the ȳj is replaced by φ̂j ȳj in problem (1).

These two stage models are summarized in the Table (2).

In these models, the values of φ̂−1
j and θ̂j can be used as the inefficiency measures.

For φ̂j = 1 (θ̂j = 1) the point is the boundary point of Tϕ but not necessarily it

represents the efficient point. The DMUj is identified as efficient if for proportional

scaling parameter φ̂j = 1 (θ̂j = 1) and the second stage models identifies DMUj

as α-stochastically efficient. The additional condition is interpreted as the sum of

slacks and for α-stochastic efficiency it is required that it holds with probability 1−α

and using this condition for efficiency evaluation a class of weakly efficient points is

defined. Where the as the weakly efficient point is considered such point that fulfills

only the condition on optimal value of the proportional scaling parameter φ̂j = 1

(θ̂j = 1).

6 Oriented SDEA models

Two stage oriented models described in Table (2) can be collapsed to one stage

model. In both stages the objective function optimization is subject to the same

constraints, the only difference being the objective function. To merge these stages in

one optimization problem, the non-Archimedean ε is used as weight for second stage

objective function. The presence of non-Archimedean ε in the objective function
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allows such proportional movement towards the frontier that it drive out the slacks

optimization. In the following sections almost 100% confidence chance constrained

oriented models will be defined and their linearization will be presented.

Output oriented model In this section, the almost 100% confidence chance

constrained output oriented problem is linearized. The one stage model, derived from

two stage optimization model presented in Table (2) is stated as follows:

max
λ,φ

φ + ε(Prob(eT (X̃λ− x̃j) + eT (φỹj − Ỹ λ))− α) (9)

s.t. Prob(ix̃λ < x̃ij) ≥ 1− ε, i = 1, . . . , m;

Prob(rỹλ > φỹrj) ≥ 1− ε, r = 1, . . . , s;

ϕ(eT λ) = ϕ

λ ≥ 0;

After, the same linearization procedure, applied to problem (1) and described in

the previous section is used, the following model is derived:

maxλ,qkr,hki,φ φ− ε[eT (X̄λ− x̄j) + eT (φȳj − Ȳ λ)+

+δ(eT (Aλ− aj) + eT (φb̄j − B̄λ))σεΦ
−1(α)]+

+ε(
∑s

r=1(q1r + q2r) +
∑m

i=1(h1i + h2i))

s.t. ix̄λ ≤ x̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλ− aij = h1i − h2i, i = 1, . . . , m,

φȳrj ≤ rȳλ + (q1r + q2r)σεΦ
−1(ε),

φbrj − rbλ = q1r − q2r, r = 1, . . . , s,

ϕ(eT λ) = ϕ,

λ ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2,

(10)

Input oriented model Similarly, as for the output oriented model represented

by problem (9), the almost 100% confidence chance constrained input oriented model

will be derived. The one stage model is created by merging the two stage optimization
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process presented in Table (2). The one stage model is stated as follows:

min
λ,θ

θ − ε(Prob(eT (X̃λ− θx̃j) + eT (ỹj − Ỹ λ))− α) (11)

s.t. Prob(ix̃λ < θx̃ij) ≥ 1− ε, i = 1, . . . , m;

Prob(rỹλ > ỹrj) ≥ 1− ε, r = 1, . . . , s;

ϕ(eT λ) = ϕ

λ ≥ 0;

Applying the same linearization procedure as for the output oriented model the fol-

lowing linear deterministic equivalent of the input oriented almost 100% chance con-

strained model is derived:

minλ,qkr,hki,θ θ + ε[eT (X̄λ− θx̄j) + eT (ȳj − Ȳ λ)+

+δ(eT (Aλ− θaj) + eT (b̄j − B̄λ))σεΦ
−1(α)]+

+ε(
∑s

r=1(q1r + q2r) +
∑m

i=1(h1i + h2i))

s.t. ix̄λ ≤ θx̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλ− θaij = h1i − h2i, i = 1, . . . , m,

ȳjλ ≤ rȳ + (q1r + q2r)σεΦ
−1(ε),

brj − rbλ = q1r − q2r, r = 1, . . . , s,

ϕ(eT λ) = ϕ,

λ ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2,

(12)

The optimal solution (λ∗, q∗kr, h
∗
ki, φ

∗) of problem (10) ((λ∗, q∗kr, h
∗
ki, θ

∗) for problem

(12)) is used to evaluate the efficiency of DMUj . When the output (input) oriented

model is used the DMUj is α-stochastically efficient if the following two conditions

are satisfied:

1. φ∗ = 1 (θ∗ = 1);

2. eT (X̄λ∗ − x̄j) + eT (φ∗ȳj − Ȳ λ∗) + |eT (Aλ∗ − aj) + eT (φ∗b̄j − B̄λ∗)|σεΦ
−1(α) ≥ 0

(eT (X̄λ∗ − θ∗x̄j) + eT (ȳj − Ȳ λ∗) + |eT (Aλ∗ − θ∗aj) + eT (b̄j − B̄λ∗)|σεΦ
−1(α) ≥ 0).

As it was mentioned in the section on efficiency measure introduction a class

of weak efficient DMUs can be defined. The analyzed DMUj is identified as weak

efficient when the optimal solution of associated problem satisfies φ∗ = 1 or θ∗ = 1.
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7 Chance constrained DEA model

As in the section on almost 100% chance constrained models, inputs and outputs are

considered to be jointly normally distributed and the following chance constrained

version of DEA model is constructed:

max
λ

eT (X̄λ− x̄j) + eT (ȳj − Ȳ λ) (13)

s.t.

Prob(ix̃λ < x̃ij) ≥ 1− α, i = 1, . . . , m;

Prob(rỹλ > ỹrj) ≥ 1− α, r = 1, . . . , s;

ϕ(eT λ) = ϕ

λ ≥ 0;

This problem relates to the definition of chance constrained efficiency domination in

the fourth section. Applying the same procedure as for almost 100% chance con-

strained problems the two stage problems are derived. These two stage chance con-

strained problems are summarized in the Table (3).

As for problem (1) the dual problem to problem (13) can be derived and the

optimal solutions used to identify the stochastic supporting hyperplanes to analyzed

DMUs. Using the identified stochastic supporting hyperplanes the production possi-

bility frontier can be estimated.

The same linearization procedure as was used to linearize problem (1) and de-

scribed in previous section, is applied after the two stage problem is merged in one

optimization problem. The following oriented and linearized chance constrained mod-

els are derived:
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Output oriented model

maxλ,qkr,hki,φ φ− ε(eT (X̄λ− x̄j) + eT (φȳj − Ȳ λ)+

+ε(
∑s

r=1(q1r + q2r) +
∑m

i=1(h1i + h2i))

s.t. ix̄λ ≤ x̄ij + (h1i + h2i)σεΦ
−1(α), i = 1, . . . , m,

iaλ− aij = h1i − h2i, i = 1, . . . , m,

ȳjλ ≤ φrȳ + (q1r + q2r)σεΦ
−1(α), r = 1, . . . , s,

φbrj −r bλ = q1r − q2r, r = 1, . . . , s,

ϕ(eT λ) = ϕ,

λ ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2,

i = 1, . . . , m,

r = 1, . . . , s.

(14)

Input oriented model

minλ,qkr,hki,θ θ + ε(eT (X̄λ− θx̄j) + eT (ȳj − Ȳ λ))+

+ε(
∑s

r=1(q1r + q2r) +
∑m

i=1(h1i + h2i))

s.t. ix̄λ ≤ θx̄ij + (h1i + h2i)σεΦ
−1(α), i = 1, . . . ,m,

iaλ− θaij = h1i − h2i, i = 1, . . . ,m,

ȳjλ ≤r ȳ + (q1r + q2r)σεΦ
−1(α), r = 1, . . . , s,

brj −r bλ = q1r − q2r, r = 1, . . . , s,

ϕ(eT λ) = ϕ,

λ ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2,

i = 1, . . . ,m,

r = 1, . . . , s.

(15)

Similarly, as for Problems (12) and (10), the optimal solution (λ∗, q∗kr, h
∗
ki, φ

∗) of

problem (14) ((λ∗, q∗kr, h
∗
ki, θ

∗) for problem (15)) can be used to evaluate the efficiency

of DMUj as in the previous section.

The DMUj is chance constrained efficient if the following two conditions are

satisfied:

1. φ∗ = 1 (θ = 1);
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2. All expected values of slacks are zero,

eT (X̄λ− x̄j) = 0 and eT (φȳj − Ȳ λ) = 0

(eT (X̄λ− θx̄j) = 0 and eT (ȳj − Ȳ λ) = 0)

To simplify the evaluation of efficiency score the following two efficiency measures

for stochastic models which are stochastic equivalents for measures introduced by

Tone (1993), are proposed:

Input oriented: χj =

(
θ∗ +

eT (X̄λ∗ − θ∗x̄j)

eT x̄j

)
eT ȳj

eT ȳj − eT (ȳj − Ȳ λ∗)

Output oriented: τ−1
j =

(
φ∗ − eT (φ∗ȳj − Ȳ λ∗))

eT ȳj

)
eT x̄j

eT x̄j + eT (φ∗ȳj − Ȳ λ∗)

The proposed efficiency measures τ and χ have following properties:

1. 0 ≤ τj, χj ≤ 1

2. χj = 1, τj = 1 ⇔ DMUj is chance constrained efficient

3. τj and χj are units invariant measures

4. τj and χj are monotonic increasing in inputs and outputs

5. τj and χj are decreasing in the relative values of the slacks

6. τj = φ∗, χj = θ∗ ⇔ the expected values of all slacks are zero.

These measures make it easier to evaluate the efficiency score of DMUj because

they take into account the values of maximal proportional increase and the slacks

(residuals) values.

8 Introducing returns to scale

Further development of aforementioned DEA models requires the inclusion of the

returns to scale type to the model specification. As it is mentioned in the literature

review section the CCR model was used to analyze the set of DMUs that were using

the production function with constant returns to scale. The BCC model and its

variations were developed to analyze the production function with variable returns
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to scale. The same methodology will be used here to develop the stochastic DEA

models with variable (VRS), non-increasing and non-decreasing returns to scale. To

introduce the returns to scale in to the stochastic the concept by Banker et al. (1984)

is used in terms of expected values in the following definition:

Definition 8. Returns to scale. Let DMUj is stochastically efficient and the point

Zδ = ((1 + δ)x̄j, (1 + δ)ȳj) is point in δ–neighborhood of (x̄j, ȳj) :

• The Non-Decreasing returns to scale are present ⇔ ∃ δ∗ > 0 such that Zδ ∈ Tϕ

for δ∗ > δ ≥ 0 and Zδ∈\ Tϕ for − δ∗ < δ < 0

• The Constant returns to scale are present ⇔ ∃ δ∗ > 0 such that Zδ ∈ Tϕ

for | δ |< δ∗

• The Non-Increasing returns to scale are present ⇔ ∃ δ∗ > 0 such that Zδ∈\ Tϕ

for δ∗ > δ ≥ 0 and Zδ ∈ Tϕ for − δ∗ < δ < 0

The various types of returns to scale are reflected by different shapes of the pro-

duction possibility set frontier that is set up by intersection of supporting hyperplanes

identified by solutions of multiplier problems. In the case of constant returns to scale

(CCR model by Charnes et al. (1978)) the envelopment surface consist of a single

half line that passes through origin as it is shown in Figure (3). Figure (3) also

presents the production possibility frontier of the model with the variable returns to

scale that is referred to as the BCC model. In the case of VRS presence the frontier

is piecewise linear set. These types of returns to scale of production possibility set

are parameterized via the selection of ϕ and constraint type associated with the ϕ as

follows:

ϕ =

{
0 Constant returns to scale (CCR model)

1 Variable returns to scale (BCC model)

Since the α-stochastically efficient point (x̃j, ỹj) satisfies condition (6) for the point

Zδ = ((1 + δ)x̄j, (1 + δ)ȳj) can be derived:

cT (1 + δ)x̃j + dT (1 + δ)ỹj + fj + (1 + δ)Φ−1(ε)σε | cT aj + dT bj | =

= (1 + δ)(cT x̃j + dT ỹj + fj + Φ−1(ε)σε | cT aj + dT bj |)− δfj = −δfj. (16)
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Therefore the point Zδ ∈ Tϕ only if and only if the −δfj ≥ 0. Employing definition

(8) the relation between returns to scale and the sign of fj reveals. The returns to

scale type is reflected in the type of the constraint ϕ(eT λ) = ϕ for ϕ = 1. The Table

(1) summarizes the constraint variations and relates the constraint type on λ, the

returns to scale type and frontier hyperplane characteristic.

9 Summary of models

In the previous sections the various models were derived and related to definitions of

α-stochastic and chance constrained efficiency dominance. Therefore, the Table (4)

that summarizes these models is presented. It is evident that the models based on

different efficiency dominance definition lead to different evaluation of efficiency. It

should be stressed that even the models using the same efficiency dominance definition

but with different orientation choice lead to different results. Therefore, the choice of

the efficiency dominance type, returns to scale and projection path to the envelopment

surface (the set of dominating points in the production possibility set) is the crucial

choice for the efficiency analysis. The important choice for efficiency score evaluation

is the choice of efficiency measure.

The returns to scale choice affects the shape of the production possibility set

envelopment. The restrictions on returns to scale are related to four types of the

envelopment surface shape through the geometry of the production possibility set

and these restrictions interpreted as the restriction on λ in the envelopment problem

or a restriction on supporting hyperplanes in the multiplier problem.

The evaluation of efficiency score is based on distance measurement between the

point that represent DMU and the associated point on the envelopment surface. This

distance measure used in additive models is the most simple efficiency measure. More

sophisticated efficiency measure is created using the measure of maximal proportional

inputs reduction (output augmentation) while keeping the levels of outputs (inputs)

fixed. This proportional input (output) scaling approach is interpreted as the selection

of projection path towards the envelopment surface and results to creation of oriented

SDEA models.

The use of Non-Archimedean infinitesimal, ε is closely related to unit invariance
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property of the objective function values of derived models, because the result of

multiplication by ε is not unit dependent and its role is to distinguish between the

efficient and inefficient DMUs which are elements of the production possibility set

boundary. The use of unit invariant models also delivers the possibility of units

of measurement change when numerical problems (e.g.: tiny diagonal matrices) are

expected to arise when the models are solved.

In the Table (4), presented SDEA are compared only with the most popular

DEA models that appear in the present literature. The additional SDEA models can

be created as the extensions of models covered in this paper using the extensions

procedures for DEA models.

10 Method for SDEA model solving

To solve the linear problems associated with SDEA models the interior point method

(IPM) is used. IPM is used because it is less computational costly than the simplex

methods for large sized problems. The second reason for IPM use is that the IPM

solutions satisfy the strong complementarity slackness condition (SCSC). The SCSC

solution is solution with maximal product of the positive components of the optimal

solution. Therefore, SCSC solutions are optimal solutions with minimal number of

zero components. In the case of not unique optimal solution, the SCSC solution is not

the vertex of the optimal solution set as it is in the case when the simplex algorithm

is used. Simplex type algorithm searches for the optimal solution among the vertices

of the feasibility set, therefore the optimal solution is a vertex (vertices). The IPM

generates the infinite sequence of points that converges to a optimal solution and the

iteration process stops when the iterates are sufficiently close to the optimal solution.

For the purpose of IPM use the linearized problems can be easily transformed to

the standard linear programming form:

Primal: min cT x Dual: max bTy

s.t. Ax = b,x ≥ 0 s.t. ATy + z = c, z ≥ 0.
(17)

In the case of linearized stochastic problems, vectors x, c, z ∈ Rn+3(m+s)+1; vectors

y, b ∈ R2(m+s)+1 and matrix A ∈ R(2(m+s)+1)×(n+3(m+s)+1). When using the primal-
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dual version of interior point method the primal and dual problem (17) are solved

simultaneously. The optimal solution of linear programming problem associated with

DEA model consists of envelopment and multiplier problem solutions and these so-

lutions are utilized to evaluate the efficiency of analyzed DMU and identification of

the adjacent supporting hyperplane.

Using the complementarity constraint zTx = 0 (equivalent to duality gap condi-

tion cTx−bTy = 0) together with the feasibility constraints the following optimality

condition for problem (17) is stated:



Ax− b

ATy + z− c

zTx


 =




0

0

0


 , (18)

where z,x ≥ 0. The strict complementarity solution to problem (18) is such solution

(x, z,y) that xi+zi > 0, ∀i = 1, . . . , n+3(m+s)+1. In the case that the problem (18)

solution set is not a singleton set (the problem (17) does not have unique solution)

the set of strict complementarity solutions is equal to the set of SCSC solutions. In

the case of unique solution of problem (17), the unique solution to problem (18) is

the SCSC solution.

To solve problem (18) usually a variant of Newton’s method is used. The created

solver uses the Mehrotra’s predictor-corrector algorithm that belongs to the class of

path following IPM algorithms. The algorithm uses the combination of Newton’s

direction (gap decreasing direction) and centering direction to solve the sequence of

Problems (18), where the complementarity constraint is modified to xT
k zk = µk and

sequence µk converges to 0 for k →∞. The iteration process stops if the problem is

solved with desired accuracy or the limit for number of iterations is reached.

The solver for proposed SDEA models is constructed using the procedures pack-

age known as PCx linear solver obtained from Optimization Technology Center at

Argonne National Laboratory and Northwestern University.

11 Conclusions

The major contribution of this theoretical paper is the development of four oriented

stochastic DEA models and description of their properties. Using the techniques of
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stochastic problems linearization the proposed stochastic models were linearized, so

the interior point methods for linear problems can be used to solve linear programming

problems associated with the models.

The created solver for problems associated with the SDEA models, uses primal-

dual interior point method algorithm and both primal and dual solution are utilized

in efficiency evaluation and estimation of production possibility frontier.

The planed application of SDEA methodology is to compare the productivity

analysis results obtained by parametric methods to results obtained by SDEA.
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Model (Orientation) Returns to scale Constraint Hyperplane

CCR model

(Input, Output) Constant None, ϕ = 0 Passes trough origin

BCC model

(Input, Output) Variable eT λ = 1 Not constrained

SDEA models

(Input) Non-Decreasing eT λ ≥ 1 f ∗j ≥ 0

(Input) Non-Increasing eT λ ≤ 1 f ∗j ≤ 0

(Input) Constant None f ∗j = 0

(Output) Non-Decreasing eT λ ≥ 1 f ∗j ≤ 0

(Output) Non-Increasing eT λ ≤ 1 f ∗j ≥ 0

(Output) Constant None f ∗j = 0

Table 1: Returns to scale
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ỹ r

j
)
≥

1
−

ε

ϕ
(e

T
λ
)

=
ϕ

ϕ
(e

T
λ
)

=
ϕ

λ
≥

0
λ
≥

0

i
=

1,
..

.,
m

;
r

=
1,

..
.,

s.

In
p
u
t

o
ri

e
n
te

d
m

o
d
e
l

F
ir

st
st

ag
e

S
ec

on
d

st
ag

e

m
in

λ
,θ

θ
m

ax
λ
P

ro
b(

eT
(X̃

λ
−

θ̂ j
x̃

j
)
+

eT
(ỹ
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