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1 Introduction

Dynamic optimization in economics appeared in the 1920s with the work of Hotelling
and Ramsey. In the 1960s dynamic mathematical techniques became then more fa-
miliar to economists mainly due to the work of neoclassical growth theorists. These
techniques involve most of the time formulation of models in continuous time. When
closed form solutions do not exist they are then formulated in discrete time. The
purpose of this document is to provide some sample solutions of a collection of
dynamic optimization problems in two settings, using analytical methods in contin-
uous time and numerical methods in discrete time.

Formulation of infinite-horizon models are not possible with numerical methods.
Therefore approximation issues are crucial in finite-horizon models. We consider two
classes of off-the-shelf algorithms to solve these dynamic models. The first is non-
linear programming (NLP) developed originally for optimal planning models. The
second class is the mixed complementarity problem (MCP) approach. The MCP
formulation is represented by the first-order conditions for nonlinear programming.
Hence any NLP problem can be solved as an MCP, not necessarily as efficient as us-
ing NLP-specific methods. It is then not so surprising that an MCP formulation can
provide a better approximation to infinite-horizon problems than does conventional
finite NLP.

Figure 1: Approximating infinite-horizon models
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The outline of the paper is as follows. Starting from the classical mathematical
technique to solve dynamic economizing problems in continuous time, the next
section shows how to derive the NLP and MCP formulation to solve these problems.
Section 3 presents in detail analytical solutions to economic planning problems and
shows how to formulate them in off-the-shelf softwares. The following section moves
on to the neoclassical growth model. The last section explains how to use the
optimal neoclassical growth model in applied economics.

2 Mathematical Methods

The dynamic economizing problem may be solved in three different approaches.
The first approach going back up to Bernoulli in the very late 1600s is the calculus
of variations. The second is the maximum principal developed in the 1950s by Pon-
tryagin and his co-workers. The third approach is dynamic programming developed
by Bellman about the same time.

Early applications of dynamic optimization to economics are due to Ramsey
and Hotelling in the 1920s. At that time the mathematical technique used to solve
dynamic problems was the calculus of variations. Therefore in the following section
we first state in a concise way the calculus of variations problem. Then we move
on to the maximum principle which can be considered a dynamic generalization of
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the method of Lagrange multiplier. This method is well-known among economists
and is especially suited to the formulation in discrete time. Regarding dynamic
programming it is usually applied to stochastic models and then will not be covered
here.

2.1 Continuous time approach

The classical calculus of variations problem may be written as

max
{x(t)}

J =
∫ t1

t0

I(x(t), x′(t), t)dt

subject to various initial and endpoint conditions

where these conditions are defined as follow:

a. Euler equation: Fx = dFx′/dt, t0 ≤ t ≤ t1.

b. Legendre condition: Fx′x′ ≤ 0, t0 ≤ t ≤ t1.

c. Boundary conditions:

- Initial conditions always apply: x(t0) = x0.

- The terminal time and terminal value may be fixed exogenously or free.

d. Transversality conditions apply when the terminal value and time are free:

- If only the terminal value is free, then Fx′ = 0 at t1.

- If only the terminal time is free, then F − x′Fx′ = 0 at t1.

- If both the terminal value and time are free, then F = 0 and Fx′ = 0 at t1.

These necessary conditions of the calculus of variations can be derived from
the maximum principle. Intuitively it remains to let the rates of change of the
state variables to be the control variables in the maximum principle, which means
u(t) = x′(t). Assuming that the terminal time value is fixed, which is always the
case in numerical problems, the corresponding maximum principle may be defined
as

max
{u(t)}

J =
∫ t1

t0

I(x(t), u(t), t)dt + F (x (t1) , t1)

subject to x′(t) = f(x(t), u(t), t)
t0, t1 and x (t0) = x0 fixed
x (t1) = g (x (t1) , t1) or free

where I(·) is the intermediate function, F (·) is the final function, f(·) is the state
equation function and g(·) is the terminal constraint function.

In a concise way the maximum principle technique involves adding costate vari-
ables λ(t) to the problem, defining a new function called the Hamiltonian,

H(x(t), u(t), λ(t), t) = I(x, u, t) + λ(t)f(x, u, t)
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and solving for trajectories {u(t)}, {λ(t)}, and {x(t)} satisfying the following con-
ditions

optimality condition
∂H

∂u
= Iu + λfu = 0

costate equation λ′ = −∂H

∂x
= − (Ix + λfx)

state equation x′ =
∂H

∂λ
= f with x (t0) = x0

terminal conditions · x (t1) ≥ 0 ⊥ λ (t1) ≥ ∂F

∂x

· λ (t1) =
∂F

∂x
+ λ̃

∂g

∂x

with λ̃ ≥ 0 ⊥ x (t1) = g (x (t1) , t1)

which are necessary for a local maximum.

2.2 Discrete time formulation

The formulation of the discrete time version of the maximum principle is straight-
forward. Forming the Hamiltonian,

H(xt, ut, λt+1, t) = I(x, u, t) + λt+1f(x, u, t)

the necessary conditions are as follow:

optimality condition
∂H

∂ut
= Iu + λt+1fu = 0

costate equation λt+1 − λt = −∂H

∂xt
= − (Ix + λt+1fx)

state equation xt+1 − xt =
∂H

∂λt+1
= f with xt0 = x0

terminal conditions · xt1+1 ≥ 0 ⊥ λt1+1 ≥ ∂F

∂x

· λt1+1 =
∂F

∂xt1+1
+ λ̃

∂g

∂xt1+1

with λ̃ ≥ 0 ⊥ xt1+1 = g (xt1+1, t1 + 1)

As mentioned earlier, the maximum principle can be considered the extension
of the method of Lagrange multipliers to dynamic optimization problems. This
method allows us to state problems in the same way they would be written in off-
the-shelf softwares. Write L for the Lagrangian of the full intertemporal problem.
The NLP formulation is then

max
{u(t)},{λ(t)},{x(t)}

L =
t1∑

t=t0

I (xt, ut, t) + λt+1 [xt + f (xt, ut, t)− xt+1]

+ λt0 [xt0 − x0] + λ̃t1+1 [g (xt1+1, t1 + 1)− xt1+1] + F (xt1+1, t1 + 1)
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and the MCP formulation follows from the first-order conditions

∂L

∂ut
= Iu (xt, ut, t) + λt+1fu (xt, ut, t) = 0 t = t0, . . . , t1

∂L

∂xt
= Ix (xt, ut, t) + λt+1fx (xt, ut, t) + λt+1 − λt = 0 t = t0, . . . , t1

∂L

∂xt1+1
= −λt1+1 + λ̃t1+1 (gx − 1) + Fx = 0

∂L

∂λt+1
= f (xt, ut, t)− (xt+1 − xt) = 0 t = t0, . . . , t1

∂L

∂λt0

= xt0 − x0 = 0

∂L

∂λ̃t1+1

= g (xt1+1, t1 + 1)− xt1+1 = 0

which are the necessary conditions of the maximum principle.
The method of Lagrange multipliers shows clearly that when the system has a

fixed final state, as here, there are two constraints for the terminal period t1+1: the
state variable xt1+1 must satisfy the terminal constraint and still satisfies the state
equation. This explains the two Lagrange multipliers associated with xt1+1: λt1+1

for the state equation, and λ̃t1+1 for the terminal constraint. When the system
has a free final state, which means that the terminal constraint is not specified, the
Lagrange multiplier λt1+1 is equal to zero if the value of the final function is zero.

3 Economic Planning Models

3.1 Optimal consumption plan
1Find the consumption plan C(t), 0 ≤ t ≤ T , over a fixed period to maximize the
discounted utility stream

∫ T

0

e−rtCa(t)dt subject to C(t) = iK(t)−K ′(t), K(0) = K0, K(T ) = 0

where 0 < a < 1 and K represents the capital stock.

Analytic solution

We have a variational problem based on the function:

F (t, k, k′) = e−rtU(ik − k′)

Taking derivatives, we have:
Fk = ie−rtU ′

and
Fk′ = −e−rtU ′

The Euler equation is then:

d

dt

[−e−rtU ′] = ie−rtU ′

1Problem 4.5 in Kamien and Schwartz (2000).

4



Although the underlying problem is defined in terms of the capital stock, it is
convenient at this point to use consumption as the decision variable, when we form
the time derivative we have:

re−rtU ′ − e−rtU ′′c′ = ie−rtU ′

which reduces to:

−U ′′c′

U ′ = i− r

In the case of constant elasticity utility,

U(c) = ca,

the Euler equation becomes:

(1− a)
c′

c
= i− r

and, integrating we determine the growth rate of consumption:

c = c0e
i−r
1−a t

In this expression, initial consumption level is a constant of integration. In order
to determine the consumption level, we need to focus on the initial and terminal
conditions for the capital stock. To determine the time path of the capital stock, we
consider the equation which relates consumption to capital earnings and investment:

ik − k′ = c0e
i−r
1−a t

In order to solve an equation of this form, it is necessary to use a standard method
for solving this sort of an equation, multiplying by an integrating factor:

e−it [k′ − ik] = −c0e
θt

in which we define:
θ =

i− r

1− a
− i =

ai− r

1− a

This equation can be written:

d
[
e−itk(t)

]
= −c0e

θtdt

which integrates to:

e−itk(t) = γ − c0
eθt

θ
so:

k(t) = γeit − c0

θ
e

i−r
1−a t

We then have two boundary conditions to determine the constants of integration:

k(0) = k0, k(T ) = 0

The initial condition produces:

γ = k0 +
c0

θ

Substituting into the terminal condition, we have:

c0 =
θk0

eθT − 1

Finally, substitute the integrating constants back into the expression for the capital
stock to obtain:

k(t) = k0e
it

[
eθT − eθt

eθT − 1

]
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Numeric solution

Working in discrete time, the following code sets up the model as a nonlinear op-
timization problem. The first solution is used to compare results from the analytic
and numeric models. The second set of solutions evaluate the qualitative properties
of the consumption path for alternative elasticities parameters, a. The final calcu-
lation in this program presents an alternative representation of the choice problem
as budget-constrained welfare maximization.

1 $title Kamien and Schwartz, problem 4.5 - NLP formulation

2

3 sets t time periods / 0*60 /

4 decade(t) decades / 10, 20, 30, 40, 50 /

5 tfirst(t) first period of time

6 tlast(t) last period of time;

7

8 tfirst(t) = yes$(ord(t) eq 1);

9 tlast(t) = yes$(ord(t) eq card(t));

10

11 scalars r discount rate / 0.03 /

12 i interest rate / 0.04 /

13 a utility coefficient / 0.5 /;

14

15 variables c(t) consumption level

16 k(t) capital stock

17 kt terminal capital stock

18 u utility function;

19

20 equations market(t) market clearance in period t

21 market_t terminal market clearance

22 const_kt terminal capital constraint

23 utility objective function definition;

24

25 market(t).. k(t) - k(t-1) =e= 1$tfirst(t) + i*k(t-1) - c(t-1);

26

27 market_t.. (kt - sum(tlast, k(tlast))) =e= sum(tlast, i*k(tlast) - c(tlast));

28

29 const_kt.. kt =e= 0;

30

31 utility.. u =e= sum(t, (1/(1+r))**((ord(t)-1)) * c(t)**a);

32

33 model ramsey / all /;

34

35 * Lower bound to avoid domain errors

36

37 c.lo(t) = 0.001;

38

39 * Numeric solution

40

41 parameters compare comparison of analytic and numeric solution;

42

43 solve ramsey using nlp maximizing u;

44

45 compare(t,’numeric c’) = c.l(t);

46 compare(t,’numeric k’) = k.l(t);

47

48 * Analytic solution

49

50 scalars theta, c0;

51

52 theta = (a * i - r) / (1 - a);

53 c0 = theta / (exp(theta * (card(t)-1)) - 1);

54

55 compare(t,’analytic c’) = c0 * exp((theta+i)*(ord(t)-1));

56 compare(t,’analytic k’) = exp(i*(ord(t)-1)) * (exp(theta*(card(t)-1))

57 -exp(theta*(ord(t)-1))) / (exp(theta*(card(t)-1))-1);

58
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59 * Alternative elasticities parameters

60

61 sets elasval alternative elasticity values / ’0.3’,’0.6’,’0.9’/;

62

63 parameters consum consumption path for alternative elasticities;

64

65 a = 0;

66 loop(elasval,

67 a = 0.3 + a;

68 solve ramsey using nlp maximizing u;

69 consum(t,elasval) = c.l(t);

70 );

71

72 * Alternative representation of the choice problem

73

74 parameter p(t) present value of consumption in period t;

75

76 p(t) = (1/(1 + i))**(ord(t)-1);

77

78 equations budget present-value budget constraint;

79

80 budget.. sum(t, p(t) * c(t)) =e= 1 + i;

81

82 model altmodel /utility, budget/;

83

84 a = 0.5;

85 solve altmodel using nlp maximizing u;

86

87 compare(t,"altmodel c") = c.l(t);

88

89 $if %batch%==yes $setglobal batch yes

90 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

91 $if %batch%==yes $setglobal gp_opt2 "set title"

92

93 $setglobal domain t

94 $setglobal labels decade

95

96 $if %batch%==yes $setglobal gp_opt3 "set output ’ks45a.eps’"

97 $libinclude plot compare

98

99 $if %batch%==yes $setglobal gp_opt3 "set output ’ks45b.eps’"

100 $setglobal gp_opt4 "set key left"

101 $libinclude plot consum
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Figure 2: Analytic and Numeric Solutions
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Figure 3: Consumption Paths
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Figure 1 compare the state variable time path between analytic and numeric
models. They don’t seem to be identical especially the value of capital at the final
period. The reason comes from the treatment of time being a discrete succession of
periods. It results that, the final period in continuous-time model corresponds to
the end of the final period in discrete-time model, which is the beginning of period
t1 + 1. Since the continuous time is the limit of discrete periods shrinking to zero,
differences between the two approaches are reduced when smaller periods of time
are considered. An illustration is given below.

1 $title Kamien and Schwartz, problem 4.5 - Smaller time periods

2

3 sets t time periods / 0*120 /

4 m(t) main time periods / 0 /

5 tfirst(t) first period of time

6 tlast(t) last period of time;

7

8 tfirst(t) = yes$(ord(t) eq 1);

9 tlast(t) = yes$(ord(t) eq card(t));

10

11 scalars r discount rate / 0.03 /

12 i interest rate / 0.04 /

13 a utility coefficient / 0.5 /

14 dt increment of time subperiod / 2 /;

15

16 loop(t$m(t), m(t+dt)=yes; );

17

18 variables c(t) consumption level

19 k(t) capital stock

20 kt terminal capital stock

21 u utility function;

22

23 equations market(t) market clearance in period t

24 market_t terminal market clearance

25 const_kt terminal capital constraint

26 utility objective function definition;

27

28 market(t).. dt * (k(t) - k(t-1)) =e= (1*dt)$tfirst(t) + i*k(t-1) - c(t-1);

29

30 market_t.. (kt - sum(tlast, k(tlast))) =e= sum(tlast, i*k(tlast) - c(tlast));

31

32 const_kt.. kt =e= 0;

33

34 utility.. u =e= sum(t, (1/(1+r))**((ord(t)-1)/dt) * c(t)**a / dt);

35

36 model ramsey / all /;

37

38 * Lower bound to avoid domain errors

39

40 c.lo(t) = 0.001;

41

42 * Do a comparison of numeric and analytic solutions

43

44 parameters compare comparison of analytic and numeric solution;

45

46 solve ramsey using nlp maximizing u;

47

48 compare(m,’numeric c’) = c.l(m);

49 compare(m,’numeric k’) = k.l(m);

50

51 scalars theta, c0;

52

53 theta = (a * i - r) / (1 - a);

54 c0 = theta / (exp(theta * (card(t)-1)/dt) - 1);

55

56 compare(m(t),’analytic c’) = c0 * exp((theta+i)*(ord(t)-1)/dt);

57 compare(m(t),’analytic k’) = exp(i*(ord(t)-1)/dt) * (exp(theta*(card(t)-1)/dt)
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58 -exp(theta*(ord(t)-1)/dt)) / (exp(theta*(card(t)-1)/dt)-1);

59

60 option decimals = 8;

61 display compare;

62

63 sets decade / 20 ’10’, 40 ’20’, 60 ’30’, 80 ’40’, 100 ’50’ /;

64

65 $if %batch%==yes $setglobal batch yes

66 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

67 $if %batch%==yes $setglobal gp_opt2 "set title"

68

69 $setglobal labels decade

70

71 $if %batch%==yes $setglobal gp_opt3 "set output ’ks45dt.eps’"

72 $libinclude plot compare m

Figure 4: Solution for 60 years with 120 time periods
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MCP formulation

It may be useful to represent prices explicitly in the model. Below are therefore the
MPSGE ((Rutherford, 1999)) and algebraic models using the MCP formulation.

1 $title Kamien and Schwartz, problem 4.5 - MPSGE and MCP formulation

2

3 sets t time periods / 0*60 /

4 tfirst(t) first period of time

5 tlast(t) last period of time;

6

7 tfirst(t) = yes$(ord(t) eq 1);

8 tlast(t) = yes$(ord(t) eq card(t));

9

10 scalars r discount rate / 0.03 /

11 i interest rate / 0.04 /;

12

13 variables c(t) consumption level

14 u utility function;

15

16 positive variables k(t) capital stock

17 kt terminal capital stock;

18

19 equations market(t) market clearance in period t
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20 market_t terminal market clearance

21 const_kt terminal capital constraint

22 utility objective function definition;

23

24 market(t).. k(t) - k(t-1) =e= 1$tfirst(t) + i*k(t-1) - c(t-1);

25

26 market_t.. (kt - sum(tlast, k(tlast))) =e= sum(tlast, i*k(tlast) - c(tlast));

27

28 const_kt.. kt =e= 0;

29

30 utility.. u =e= sum(t, (1/(1+r))**((ord(t)-1)) * log(c(t)));

31

32 model ks_nlp / all /;

33

34 * Lower bound to avoid domain errors

35

36 c.lo(t) = 0.001;

37

38 * NLP solution

39

40 solve ks_nlp using nlp maximizing u;

41

42 * MPSGE formulation

43

44 alias (t,t1);

45

46 parameters theta budget share over time

47 epsilon budget share over time (lagged)

48 k_nlp capital value from NLP solution;

49

50 theta(t) = (1/(1+r))**(ord(t)-1)/sum(t1,(1/(1+r))**(ord(t1)-1));

51 epsilon(t+1) = theta(t);

52 k_nlp(t) = k.l(t);

53

54 $ontext

55

56 $model:ks_mge

57

58 $sectors:

59 k(t) ! capital stock

60

61 $commodities:

62 pk(t) ! price of capital stock

63 pkt ! price of terminal capital stock

64

65 $consumers:

66 ra ! representative agent

67

68 $auxiliary:

69 kt ! terminal capital stock

70 pktc ! price of constraint terminal capital stock

71

72 $prod:k(t)

73 o:pk(t+1) q:(1+i)

74 o:pkt$tlast(t) q:(1+i)

75 i:pk(t) q:1

76

77 $demand:ra s:1.0

78 e:pk(t)$tfirst(t) q:1

79 d:pk(t)$(not tfirst(t)) q:epsilon(t)

80 d:pkt q:(sum(tlast,theta(tlast)))

81

82 $constraint:kt

83 pkt =e= pktc;

84

85 $constraint:pktc

86 kt =e= 0;
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87

88 $report:

89 v:cons(t) d:pk(t) demand:ra

90 v:cons_t d:pkt demand:ra

91

92 $offtext

93 $sysinclude mpsgeset ks_mge

94

95 * NLP values to initialize the model

96

97 k.l(t) = k_nlp(t);

98 pk.l(t) = market.m(t);

99 pkt.l = market_t.m;

100 pktc.l = -const_kt.m;

101

102 * MPSGE solution

103

104 ks_mge.iterlim = 0;

105 $include ks_mge.gen

106 solve ks_mge using mcp;

107

108 * MCP formulation

109

110 equations pr_k(t) zero profit condition for capital stock

111 pr_kt zero profit condition for terminal capital stock

112 demand(t) demand function;

113

114 pr_k(t).. (1+i) * (pk(t+1) + pkt$tlast(t)) =e= pk(t);

115

116 pr_kt.. pkt =e= pktc;

117

118 demand(t).. c(t) * (pk(t+1) + pkt$tlast(t)) =e=

119 theta(t) * sum(tfirst, pk(tfirst)*k(tfirst));

120

121 MODEL ks_mcp / pr_k.k, pr_kt.kt, market.pk, market_t.pkt, const_kt.pktc, demand.c /;

122

123 * MCP solution

124

125 ks_mcp.iterlim = 0;

126 solve ks_mcp using mcp;

3.2 The monopolist
2The demand function for a monopolist depends on both the product price and the
rate of change of the product price, according to:

x = a0p + b0 + c0p
′

Assume that the cost of production at rate x is:

C(x) = a1x2 + b1x + c1

Given the initial price, p(0) = p0, and the required ending price, p(T ) = pT , find
the price policy over 0 ≤ t ≤ T which maximizes profits:

∫ T

0

[px− C(x)]dt

Analytic solution

Notice that because the time period is fixed, the fixed term in the cost function,
c1, is irrelevant if the firm is committed to produce; so we will ignore that term to

2Problem 5.4 in Kamien and Schwartz (2000).

12



conserve on algebra.
Substituting with the demand function, we see that this problem corresponds to a
calculus of variations problem in which the function depends only on the price and
the gradient of price, but not on the time path, i.e.

F (p, p′) = px(p, p′)− C(p, p′)

Neglecting constants, this reduces to:

F (p, p′) = a0(1− a0a1)p2− a1c02p′2 + c0(1− 2a0a1)pp′ + (b0 − 2a0a1b0 − a0b1)p

Some differentiation:

Fp = 2a0(1− a0a1)p + c0(1− 2a0a1)p′ + b0− 2a0a1b0 − a0b1

and
dFp′

dt
= c0(1− 2a0a1)p′ − 2a1c02p′′

The Euler equation is then a second-order, linear differential equation with constant
coefficients:

p′′ + Bp = R

where

B =
a0(1− a0a1)

a1c02

and
R =

a0b1 + 2a0a1b0 − b0

2a1c02

Notice that in steady-state, where p′′ = 0, the Euler condition implies that:

p∗ =
R

B
=

a0b1 + 2a0a1b0 − b0

2a0(1− a0a1)

which is equivalent the optimal monopoly price in the static equilibrium.
If we are to assume that the static equilibrium model is based on a downward sloping
demand function and a convex technology, then:

a0 < 0, b0 > 0, a1 > 0, and b1 > 0

Hence, we have may conclude:

p∗ > 0, B < 0

In order to solve the differential equation, we begin with the adjacent homogeneous
system:

p′′ + Bp = R

We know that the solution of this equation has the form:

p(t) = cert

Hence:
cert (r2 + B) = 0

Defining:

r̂ =

√
a0(a0a1 − 1)

a1c02
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The solution to the non-homogeneous equation therefore has the form:

p(t) = c1e
r̂t + c2e

−r̂t + c3

and follows from the definition of r̂ that

c3 =
R

B
= p∗

And boundary conditions determine c1 and c2 as solutions to the following system
of equations:

c1 + c2 = p0 − p∗, c1e
r̂T + c2e

−r̂T = pT − p∗

When the initial and final prices are both equal to the static monopoly price, c1 =
c2 = 0 and the optimal policy is to keep the price fixed over the time horizon.

If the terminal price equals the optimal static value, then over the horizon the
price moves monotonically from the initial value to the terminal value (when the
terminal price equals the p∗, then c1 and c2 are of opposite sign).

Numeric solution

Working in discrete time, we can formulation this model as a nonlinear optimization
problem and solve it using GAMS/MINOS, as illustrated in the following code:

1 $title Kamien and Schwartz, problem 5.4 - NLP formulation

2

3 set t /1*100/,

4 decade(t) /10,20,30,40,50,60,70,80,90/;

5

6 scalar sigma elasticity of demand /4/

7 eta elasticity of supply /0.25/

8 c0 multiplier /-20/

9 a0,a1,b1, r,coef1,coef2;

10

11 parameter

12 compare comparison of numerical approximation with analytic solution,

13 pricepath approach path for prices from various starting points,

14 turnpike illustrating turnpike property of the optimal price path;

15

16 * Impute a1 and b1 so that we have a steady-state with

17 * the price and quantity both equal to unity:

18

19 b1 = (1 - 1/sigma) * (1 - 1/eta);

20 a1 = (1/2) * (1 - 1/sigma - b1);

21 a0 = -sigma;

22

23 * Declare the model:

24

25 variables p(t) price

26 x(t) quantity

27 c(t) cost

28 profit maximand;

29

30 equations demand, cost, objdef;

31

32 * By declaring equations over t+1, we omit equations for the

33 * first period in which the price is fixed exogenously:

34

35 demand(t).. x(t) =e= (1+sigma) - sigma * p(t) + c0 * (p(t)-p(t-1));

36

37 cost(t).. c(t) =e= a1 * x(t)*x(t) + b1*x(t);

38

39 objdef.. profit =e= sum(t, x(t) * p(t) - c(t));

40

41 * Create a model with all of these equations:

14



42

43 model dynamic /all/;

44

45 * Fix terminal period price at the equilibrium price:

46

47 p.fx("100") = 1;

48

49 * Fix initial period values:

50

51 p.fx("1") = 0.5;

52 solve dynamic using nlp maximizing profit;

53

54 compare(t,"numeric") = p.l(t);

55

56 r = sqrt( a0 * (a0 * a1 - 1) / (a1*c0*c0) );

57 coef2 = (p.l("1") - 1) / (1 - exp(-2 * r * 99));

58 coef1 = - coef2 * exp(-2 * r * 99);

59 compare(t,"analytic") = 1 + coef1 * exp(r * (ord(t)-1) ) + coef2 * exp(-r * (ord(t)-1));

60

61 * Create a set defined by either the initial or terminal period price:

62

63 set p0 /"0.1","0.3","0.5","0.7","0.9"/;

64

65 loop(p0,

66 p.fx("1") = 0.1 + 0.2 * (ord(p0)-1);

67 solve dynamic using nlp maximizing profit;

68 pricepath(t,p0) = p.l(t);

69 );

70

71 * Now illustrate the turnpike property:

72

73 p.fx("1") = 0.6;

74 loop(p0,

75 p.fx("100") = 0.1 + 0.2 * (ord(p0)-1);

76 solve dynamic using nlp maximizing profit;

77 turnpike(t,p0) = p.l(t);

78 );

79

80 * Display the results using GNUPLOT:

81

82 $if %batch%==yes $setglobal batch yes

83 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

84 $if %batch%==yes $setglobal gp_opt2 "set title"

85

86 $setglobal domain t

87 $setglobal labels decade

88

89 $if %batch%==yes $setglobal gp_opt3 "set output ’ks54a.eps’"

90 $libinclude plot compare

91

92 $if %batch%==yes $setglobal gp_opt3 "set output ’ks54b.eps’"

93 $libinclude plot pricepath

94

95 $if %batch%==yes $setglobal gp_opt3 "set output ’ks54c.eps’"

96 $setglobal gp_opt4 "set key bottom left"

97 $libinclude plot turnpike
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Figure 5: Analytic and Numeric Solutions
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Figure 6: Approach Paths for Various Starting Points
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Figure 7: Turnpike Property for Optimal Price Path
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3.3 Non-renewable resource
3Suppose a mine contains an amount B of a mineral resource (like coal, copper or
oil). The profit rate that can be earned from selling the resource at rate x is ln x.
Find the rate at which the resource should be sold over the fixed period [0,T] to
maximize the present value of profits from the mine. Assume the discount rate a
constant r. Assume the resource has no value beyond time T .

Analytic solution

Following the hint, define y(t) as the cumulative sales by time t. Then y′(t) is the
sales rate at time t Find y(t) to:

max
∫ T

0

e−rt ln y′(t)dt

subject to:
y(0) = 0, y(T ) = B

We therefore have:

F (t, y, y′) = e−rt ln y′(t), Fy = 0 and
dFy′

dt
=
−e−rt

y′(t)

(
y′′

y′
+ r

)

The Euler equation then gives us the differential equation:

y′′

y′
= −r

Integrating, we have:
y(t) = c1e

−rt + c2

Then applying the boundary conditions, we have:

y(t) = B
e−rt − 1
e−rT − 1

3Problem 5.5 in Kamien and Schwartz (2000).
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Numeric solution

Working in discrete time, we can formulation this model as a nonlinear optimization
problem and solve it using GAMS/MINOS, as illustrated in the following code:

1 $title Kamien and Schwartz, problem 5.5 - NLP formulation

2

3 set t /0*100/,

4 decade(t) /10,20,30,40,50,60,70,80,90/;

5

6 scalar r interest rate /0.05/;

7

8 variables profit present value of extraction

9 x(t) production at time t;

10

11 equations objdef defines profit

12 supply defines cumulative extraction;

13

14 objdef.. profit =e= sum(t, exp(-r * (ord(t)-1)) * log(x(t)));

15

16 supply.. sum(t, x(t)) =e= 1;

17

18 model hotelling /all/;

19

20 x.lo(t) = 0.00001;

21 x.l(t) = 1/card(t);

22

23 solve hotelling using nlp maximizing profit;

24

25 parameter compare comparison of numeric and analytic solutions

26 y(t) cumulative extraction in the analytic solution;

27

28 y(t) = (exp(-r * (ord(t)-1)) - 1) / (exp(-r * 100) - 1);

29

30 compare(t,"numeric") = x.l(t);

31 compare(t,"analytic") = y(t+1) - y(t);

32 compare("100","analytic") = 0;

33 display compare;

34

35 $if %batch%==yes $setglobal batch yes

36 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

37 $if %batch%==yes $setglobal gp_opt2 "set title"

38

39 $setglobal domain t

40 $setglobal labels decade

41

42 $if %batch%==yes $setglobal gp_opt3 "set output ’ks55.eps’"

43 $libinclude plot compare
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Figure 8: Analytic and Numeric Solutions
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3.4 Non-renewable resource (general case)
4Reconsider the previous problem but suppose that the profit rate is P (x) when the
resource is sold at rate x, where P ′(0) > 0 and P ′′ < 0.

1. Show that the present value of the marginal profit from extraction is constant
over the planning period (otherwise it would be worthwhile to shift the time
of sale of a unit of the resource from a less profitable moment to a more
profitable one). Marginal profit, P ′(t) therefore grows exponentially at the
discount rate r.

2. Show that the optimal extraction rate declines through time.

Analytic solution

We have a calculus of variations problem in which:

F (t, y, y′) = e−rtP (y′(t)), Fy = 0 and Fy′ = e−rtP ′(y′).

The Euler condition therefore implies:

dFy′

dt
=

de−rtP ′(y′)
dt

= 0

or, in answer to question 1:

e−rtP ′(y′) = constant

Then if P ′′ < 0, then only way that P ′(y′) increases at an exponential rate r over
time is that the extraction rate, y′, must be declining through time.

4Problem 5.6 in Kamien and Schwartz (2000).

19



Numeric solution

As the demand curve becomes more elasticity, the production profile must decline
at a faster rate so that the present value of the marginal from extraction remains
constant over the planning period.

1 $title Kamien and Schwartz, problem 5.6 - NLP formulation

2

3 set t /0*100/,

4 decade(t) /10,20,30,40,50,60,70,80,90/;

5

6 scalar r interest rate /0.05/,

7 sigma elasticity of demand /0.5/;

8

9 variables profit present value of extraction

10 x(t) production at time t;

11

12 equations objdef defines profit

13 supply defines cumulative extraction;

14

15

16 objdef.. profit =e= sum(t, exp(-r * (ord(t)-1)) * x(t)**(sigma-1)/sigma );

17

18 supply.. sum(t, x(t)) =e= 1;

19

20 model hotelling /all/;

21

22 x.lo(t) = 0.00001;

23 x.l(t) = 1/card(t);

24

25 set sigval /"1.0","1.2","1.4"/

26

27 parameter extract Extraction profile over time;

28

29 loop(sigval,

30 sigma = 0.81 + 0.2 * ord(sigval);

31 solve hotelling using nlp maximizing profit;

32 extract(t,sigval) = x.l(t);

33 );

34

35 $if %batch%==yes $setglobal batch yes

36 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

37 $if %batch%==yes $setglobal gp_opt2 "set title"

38

39 $setglobal domain t

40 $setglobal labels decade

41

42 $if %batch%==yes $setglobal gp_opt3 "set output ’ks56.eps’"

43 $libinclude plot extract
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Figure 9: Extraction Values for Alternative Values of σ
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3.5 Pollution control

Utility U(C, X) increases with the consumption rate C and decreases with the stock
of pollution, X. For C > 0, P > 0,

UC > 0, UCC < 0, lim
C→0

UC = ∞;

UX < 0, UXX < 0, lim
X→0

UX = 0; UCX = 0.

The constant rate of output Y is to be divided between consumption and pollution
control. Consumption contributes to pollution, while pollution control reduces it;
Z(C) is the net contribution to the pollution flow, with Z ′ > 0, Z ′′ > 0. For
small C, little pollution is created and much abated; thus net pollution declines:
Z(C) < 0. But for large C, considerable pollution is created and few resources
remain for pollution control, therefore on net pollution increases: Z(C) > 0. Let
C∗ be the consumption rate that satisfies Z(C∗) = 0. In addition, the environment
absorbs pollution at a constant proportionate rate b. Characterize the consumption
path C(t) that maximizes the discounted utility stream:

∫ ∞

0

e−rtU(C,X)dt

subject to

X ′ = Z(C)− bX, X(0) = X0, 0 ≤ C ≤ Y, 0 ≤ X

Also characterize the corresponding optimal pollution path and the steady state.
This kind of problems are typically the ones which are much more convenient

to solve with numerical methods rather than analytically.

1 $title Kamien and Schwartz, problem II.8.5 - NLP formulation

2

3 sets t time periods / 0*10 /

4 tfirst(t) first period of time

5 tlast(t) last period of time;

6

7 tfirst(t) = yes$(ord(t) eq 1);
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8 tlast(t) = yes$(ord(t) eq card(t));

9

10 scalars r discount rate / 0.03 /

11 b rate of pollution decay / 0.05 /

12 psi disutility rate of pollution / 0.15 /

13 alpha pollution control parameter / 5 /

14 beta function curvature parameter / 16 /

15 y constant rate of output / 8 /

16 x0 initial stock of pollution / 30 /;

17

18 variables u utility function;

19

20 positive variables c(t) consumption level

21 x(t) pollution stock

22 xt terminal capital stock;

23

24 equations steq_x(t) state equation of pollution

25 steq_xt state equation of terminal pollution

26 appr_xt approximation of terminal pollution

27 utility objective function definition;

28

29 steq_x(t).. x(t) - x(t-1) =e= x0$tfirst(t)

30 + (-alpha + beta / (y - c(t-1)) - b * x(t-1))$(not tfirst(t));

31

32 steq_xt.. (xt - sum(tlast, x(tlast))) =e=

33 - alpha + sum(tlast, beta / (y - c(tlast)) - b * x(tlast));

34

35 appr_xt.. xt =e= 150;

36

37 utility.. u =e= sum(t, (1/(1+r))**((ord(t)-1)) * (log(c(t)) - psi * log(x(t))));

38

39 model pollution / all /;

40

41 * Lower bound to avoid domain errors

42

43 c.lo(t) = 0.001;

44 c.up(t) = y-0.001;

45 x.lo(t) = 0.001;

46

47 * NLP solution

48

49 solve pollution using nlp maximizing u;

4 The Neoclassical Growth Model

4.1 Factor shares
5For a neoclassical function, show that each factor of production earns its marginal
product. Show that if owners if capital save all their income and workers consume
all their income, then the economy reaches the golden rule of capital accumulation.
Explain the results.

Analytic solution

The neoclassical function and its properties:

Y = F (K, L)

Non-negative and diminishing marginal products:

FK ≥ 0, FKK < 0, FL ≥ 0, FLL < 0
5Problem 1.5 in Barro and Sala-I-Martin (2004).
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Constant returns to scale:

F (λK, λL) = λF (K, L)

Inada conditions assuring an interior solution:

lim
K→0

FK = ∞, lim
K→∞

FK = 0

lim
L→0

FL = ∞, lim
L→∞

FL = 0

The production function may then be expressed in intensive form:

Y = LF (K/L, 1) ≡ Lf(k)

where k = K/L, or y = f(k) where y = Y/L. The marginal production of capital:

∂Y

∂K
=

∂yL

∂kL
=

∂y

∂k
= f ′(k)

The marginal product of labour:

∂Y

∂L
=

∂yL

∂L
= y + L

∂y

∂L
= f(k) + Lf ′(k)

∂k

∂L
= f(k)− f ′(k)(K/L) = f(k)− kf ′(k)

The firm’s objective is to maximize profits defined as:

maxΠ ≡ F (K,L)− wL− rK

Dividing this expression by L, we have:

max π ≡ f(k)− w − rk

The first order condition for k is:

f ′(k) = r

Under constant returns to scale, all revenue is returned to capital and labour:

f(k∗) = w + rk∗

Substituting for r, we determine the wage rates which results in zero profit:

w∗ = f(k∗)− k∗f ′(k∗)

We see that this wage is precisely the marginal product of labour. Hence, when
firms maximize profits constant returns to scale assures that profits are driven to
zero.
Assume now that all capital income is fully reinvested, so:

I∗ = r∗K∗

Also assume that all labour is consumed:

C∗ = w∗L

We therefore have:
Ċ

C
=

L̇

L
= n
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If we define c = C/L, then we have:

ċ

c
= 0

The laws of motion for capital in the Solow-Swann model are defined as:

K̇ = I − δK = r∗K − δK

so it follows that:
k̇ = r∗k − (δ + n)k

On a steady-state growth path, we have:

K̇

K
=

Ċ

C
=

L̇

L
= n

hence, k̇ = 0, and
r∗ − (δ + n) = 0

Substituting for the marginal product of capital, we recover the Golden Rule con-
dition:

f ′(k) = δ + n

Numeric solution

1 $title Barro and Sala-i-Margin, problem 1.5 - Solow-Swann Growth Model

2

3 * Declare the time horizon here. It is important to

4 * declare this set as ordered (using the "*") so that

5 * we can reference "t+1" from inside the loop over t:

6

7 set t /0*200/, t0 /0/;

8

9 * Data describing the base year are given here:

10

11 scalar alpha base year capital value share /0.6/

12 r0 base year gross return to capital /0.12/

13 delta capital depreciation rate /0.07/

14 n labor growth rate /0.02/

15 s_L savings rate of workers /0.10/

16 s_K savings rate of capital owners /0.90/

17

18 * The elasticity of substitution between labor and capital is a free

19 * parameter. For the initial simulation, we set it to unity (almost).

20 * (We use 1.01 rather than 1 in order to avoid having to change the

21 * functional form from Cobb-Douglas to CES in the model):

22

23 sigma elasticity of substitution /1.01/

24

25 * Calibrated parameters:

26

27 c0 base year consumption (calibrated)

28 rho primal CES exponent

29 k0 base year capital stock (calibrated)

30 l0 base year labor supply (calibrated);

31

32 * The following parameters hold an equilibrium time path:

33

34 parameter k Time path of capital stock

35 l Time path of labor

36 c Time path of total consumption

37 y Time path of output

38 r Time path of return to capital

39 w Time path of wage rate
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40

41 * The following parameters hold output to be plotted:

42

43 timepath Time path of per-capita variables,

44 output Time path of output (alternative sigma values),

45 return Time path of return (alternative sigma values),

46 consum Time path of consumption (alternative sigma values),

47 wage Time path of wage (alternative sigma values);

48

49 * Compute the primal elasticity exponent:

50

51 rho = 1 - 1/sigma;

52

53 * Calibrate the base year capital stock and labor supply

54 * in efficiency units, taking base year output equal to unity

55 * and measuring labor in efficiency units:

56

57 k0 = alpha / r0;

58 l0 = (1-alpha);

59

60 * Base year consumption is based on capital and labor earnings

61 * shares and the marginal propensity to save out of those income

62 * sources:

63

64 c0 = alpha * (1-s_K) + (1-alpha) * (1-s_L);

65

66 * Initialize base year (time 0) output, capital and labor stock:

67

68 y(t0) = 1;

69 k(t0) = k0;

70 l(t0) = l0;

71

72 * Do an initial simulation with the specified value of simga

73 * (1.01 = Cobb Douglas).

74

75 loop(t,

76

77 * Entering period t the values of capital and labor are known, so the

78 * output is known:

79

80 y(t) = ( alpha * (k(t)/k0)**rho + (1-alpha) * (l(t)/l0)**rho)**(1/rho);

81

82 * The return to capital and labor are computed as marginal products:

83

84 r(t) = (y(t)*k0/k(t))**(1/sigma) * alpha / k0;

85 w(t) = (y(t)*l0/l(t))**(1/sigma) * (1-alpha) / l0;

86

87 * Consumption is the sum of consumption levels by capital owners and

88 * workers:

89

90 c(t) = (1-s_K) * r(t) * k(t) + (1-s_L) * w(t) * l(t);

91

92 * Capital evolves through depreciation and investment:

93

94 k(t+1) = k(t) * (1 - delta) + y(t) - c(t);

95

96 * Labor growth is exogenous at rate n:

97

98 l(t+1) = l(t) * (1 + n);

99 );

100

101 * Store the time path of key values for plotting:

102

103 timepath(t,"output") = y(t) * l0 / l(t);

104 timepath(t,"consum") = (c(t)/c0) * l0 / l(t);

105 timepath(t,"return") = r(t) * k0 / alpha;

106 timepath(t,"wage") = w(t) * l0 / (1-alpha);
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107

108 * Declare a set over values of the elasticity of substitution (sigma)

109 * to be compared:

110

111 set sigval /"0.5", "1.0", "2.0" /;

112

113 parameter sigvalue(sigval) / "0.5" 0.5, "1.0" 1.01, "2.0" 2.0 /;

114

115 loop(sigval,

116

117 * Assign the elasticity:

118

119 sigma = sigvalue(sigval);

120 rho = 1 - 1/sigma;

121

122 * Compute the equilibrium time path (period 0 values are the same in all

123 * simulations):

124

125 loop(t,

126 y(t) = ( alpha * (k(t)/k0)**rho + (1-alpha) * (l(t)/l0)**rho)**(1/rho);

127 r(t) = (y(t)*k0/k(t))**(1/sigma) * alpha / k0;

128 w(t) = (y(t)*l0/l(t))**(1/sigma) * (1-alpha) / l0;

129 c(t) = (1-s_K) * r(t) * k(t) + (1-s_L) * w(t) * l(t);

130 k(t+1) = k(t) * (1 - delta) + y(t) - c(t);

131 l(t+1) = l(t) * (1 + n);

132 );

133

134 * Save some values to plot comparisons:

135

136 consum(t,sigval) = (c(t)/c0) * l0 / l(t);

137 output(t,sigval) = y(t) * l0 / l(t);

138 return(t,sigval) = r(t) * k0 / alpha;

139 wage(t,sigval) = w(t) * l0 / (1-alpha);

140

141 );

142

143 * Generate some labeled plots:

144

145 set tics(t) / 0, 25, 50, 75, 100, 125, 150, 175, 200 /

146

147 $if %batch%==yes $setglobal batch yes

148 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

149 $if %batch%==yes $setglobal gp_opt2 "set title"

150

151 $setglobal gp_xl tics

152 $setglobal gp_xlabel years

153 $setglobal domain t

154 $setglobal labels tics

155

156 $if %batch%==yes $setglobal gp_opt3 "set output ’bs15a.eps’"

157 $setglobal gp_opt4 "set key outside"

158 $setglobal gp_opt5 "set xlabel ’years’"

159 $setglobal gp_opt6 "set ylabel ’% change’"

160 $libinclude plot timepath

161

162 $if %batch%==yes $setglobal gp_opt3 "set output ’bs15b.eps’"

163 $libinclude plot output

164

165 $if %batch%==yes $setglobal gp_opt3 "set output ’bs15c.eps’"

166 $libinclude plot consum

167

168 $if %batch%==yes $setglobal gp_opt3 "set output ’bs15d.eps’"

169 $libinclude plot return

170

171 $if %batch%==yes $setglobal gp_opt3 "set output ’bs15e.eps’"

172 $libinclude plot wage

26



Figure 10: Key Variables

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 25 50 75 100 125 150 175 200

%
 c

ha
ng

e

years

output
consum

return
wage

Figure 11: Output
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Figure 12: Return to Capital
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Figure 13: Wage Rate
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4.2 Distortions in the Solow-Swan model
6Assume that output is produced by the CES production function,

Y = [(aF Kη
F + aIK

η
I )φ/η + aGKφ

G]1/φ

where Y is output; KF is formal capital, which is subject to taxation; KI is informal
capital, which evades taxation; KG is public capital, provided by government and
used freely by all producers; aF , aI , aG > 0; η < 1, and φ < 1. Installed formal
and informal capital differ in their location and form of ownership and, therefore,
in their productivity.

Output can be used on a one-for-one basis for consumption or gross investment
in the three types of capital. All three types of capital depreciate at the rate δ.
Population is constant, and technology progress is nil.

Formal capital is subject to tax at the rate τ at the moment of its installation.
Thus, the price of formal capital (in units of output) is 1+ τ . The price of a unit of
informal capital is one. Gross investment in public capital is the fixed fraction sG

of tax revenues. Any unused tax receipts are rebated to households in a lump-sum
manner. The sum of investment in the the two forms of private capital is the faction
s of income net of taxes and transfers. Existing private capital can be converted on
a one-to-one basis in either direction between formal and informal capital.

a. Derive the ratio of informal to formal capital used by profit-maximizing produc-
ers.

b. In the steady-state, the three forms of capital grow at the same rate. What is
the ratio of output to formal capital in the steady-state?

c. What is the steady-state growth rate of the economy?

d. Numerical simulations show that, for reasonable parameter values, the graph of
the growth rate against the tax rate, τ , initially increases rapidly, then reaches a
peak, and finally decreases steadily. Explain this nonmonotonic relation between
the growth rate and the tax rate.

Analytic solution

The problem states that output is given by the CES production function

y = f(kF , kI , kG)

=
[
(aF kη

F + aIk
η
I )ψ/η + aGkψ

G

]1/ψ

= kF

[(
aF + aI

(
kI

kF

)η)ψ/η

+ aG

(
kG

kF

)ψ
]1/ψ

,

where k denotes capital and subscripts F , I and G denote formal, informal and
government, respectively; population growth is constant and technological progress
is nil; depreciation is the same for all forms of capital, implying that

k̇F = iF − δkF ,

k̇I = iI − δkI , and
k̇G = iG − δkG ,

where i denotes the investment at time t for the kind of capital specified by the
subscript; taxes are collected as a fixed fraction of formal investment,

T = τiF ;
6Problem 1.7 in Barro and Sala-I-Martin (2004) based on Easterly (1993).
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gross investment in public capital is a fixed fraction of taxes,

iG = sGT = sGτiF ;

unused taxes,
TU = (1− sG)T = (1− sG)τiF ,

are rebated to households in a lump-sum manner; prices (in units of output) are

PF = (1 + τ) and PI = 1 ;

the sum of private investments in formal and informal capital is given by

iF + iI = s(Y − T + TU ) = s(Y − sGτiF ) ,

which implies
iI = s(Y − (1 + sGτ)iF ) ;

Treating public capital as an externality, a profit maximizing producer chooses
formal and informal investments to solve

max
iF ,iI

{Pyy − PF iF − PI iI} ≡ max
iF ,iI

{y − (1 + τ)iF − iI}

subject to

gF
def=

k̇F

kF
=

iF
kF

− δ , and

gI
def=

k̇I

kI
=

iI
kI
− δ ,

or equivalently,

kF =
iF

gF + δ
, and kI =

iI
gI + δ

.

The first order conditions for this problem are

∂y

∂kF

dkF

diF
= (1 + τ) and

∂y

∂kI

dkI

diI
= 1 ,

which implies

(
∂y

∂kI

dkI

diI

)(
∂y

∂kF

dkF

diF

)−1

=
(

kI

kF

)η−1 (
aI(gF + δ)
aF (gI + δ)

)
=

1
1 + τ

.

a. From the first order conditions, the ratio of informal to formal capital used by
profit-maximizing producers can be computed to be

kI

kF
=

[
aF (gI + δ)

(1 + τ)aI(gF + δ)

]1/(η−1)

=
[
(1 + τ)aI(gF + δ)

aF (gI + δ)

]1/(1−η)

.

b. If the three forms of capital grow at the same rate so that

gF = gI = gG ,

then

kI

kF
=

[
(1 + τ)

(
aI

aF

)]1/(1−η)

and
kG

kF
=

iG
iF

= sGτ ,
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and thus

y = kF

[(
βF + βI(1 + τ)η/(1−η)

)ψ/η

+ βGτψ

]1/ψ

,

where

βF
def= aF , βI

def= aI

(
aI

aF

)η/(1−η)

and βG
def= aGsψ

G .

The ratio of output to formal capital in the steady state is therefore

y

kF
=

[(
βF + βI(1 + τ)η/(1−η)

)ψ/η

+ βGτψ

]1/ψ

.

c. Since the ratio of output to formal capital in the steady state is constant, it must
be the case that the growth rate of the economy is equal to the growth rate of
formal capital, which is given by

g = s

(
y

kF

)
− δ .

The growth rate for the economy is therefore

g(τ) = sG(τ)1/ψ − δ

where

G(τ) def=
[(

βF + βI(1 + τ)η/(1−η)
)ψ/η

+ βGτψ

]
> 0 .

d. An economic explanation for simulated nonmonotonic behaviour for the change
in growth as a function of taxes is as follows:

As taxes grow from zero, the public good becomes available but capital
is also moved from the formal to the informal sector. For reasonable
parameter values, the increased productivity due to the public good
dominates the loss of productivity due to the transfer from formal
capital to informal capital, and so the economy grows.
At some point, the growth with respect to taxes is maximized, indicat-
ing that the loss of productivity due to movement away from formal
capital to informal capital is exactly offset by the increase in the pro-
ductivity due to public capital.
As the tax rate increases beyond the maximal point and approaches
unity, the steady state growth will decrease as the low productivity
informal capital dominates the increase in public sector productivity.

However,

g′(τ) =
(

s

ψ

)
G(τ)(−1+1/ψ)G′(τ)

where

G′(τ) = ψ

[(
βI

1− η

) (
βF + βI(1 + τ)η/(1−η)

)−1+ψ/η

(1 + τ)−1+η/(1−η) + βGτψ−1

]
.

The sign of g′ is always positive, since the sign of G is always positive and the
sign of G′ is the same as the ratio of savings rate to the elasticity of substitution
between private and public capital. This analytic result thus indicates that
growth is always increasing in the tax rate, thereby contradicting the simulated
nonmonotonic behaviour discussed above.
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Numeric solution

1 $title Barro and Sala-i-Margin, problem 1.7 - Easterly model

2

3 * This programs illustrates how to calibrate the Easterly

4 * model, evaluate how the steady-state growth rate depends on

5 * the tax rate, and then evaluates the transition path for a

6 * change in the tax rate

7

8

9 set taxrate Alternative tax rates to evaluate (%) / 1*200 /,

10 taxlabel(taxrate) /10,30,50,70,90,110,130,150,170,190 /,

11 t Years to simulate /1997*2041/,

12 return Assumed returns to public capital /low, medium, high/,

13 tplot Time periods to plot /1997*2040/,

14 decade(tplot) / 2000, 2010, 2020, 2030, 2040/;

15

16 scalar

17

18 *===============================================================================

19 * Base year data are specified here:

20

21 tau0 benchmark tax rate on formal sector investment /0.50/

22 tau_s tax rate on formal sector in simulated adjustment /0.90/

23 r_g benchmark relative return to public sector capital /1.0/

24 g baseline growth rate /0.03/

25 s_g public savings rate /0.75/

26 delta depreciation rate /0.07/

27 iratio ratio of informal to formal capital /0.15/

28 sigmag substitution elasticity between private and public capital /0.5/

29 sigmaf substitution elasticity between formal and informal capital /4.0/

30

31 *===============================================================================

32 * Calibrated or temporary parameters:

33

34 s private savings rate

35 thetag implicit benchmark value share of public capital

36 thetaf share of private capital in the formal sector

37 tau tax rate in counter-factual

38 k_f baseline formal capital

39 k_i baseline informal capital

40 k_g baseline public capital

41 k_p private sector capital stock (state variable)

42 y0 scale parameter in benchmarking

43 a_f CES share parameter for formal capital

44 a_i CES share parameter for informal capital

45 a_g CES share parameter for public capital

46 eta CES exponent (inner nest)

47 psi CES exponent (outer nest)

48

49 ki_ratio ratio of informal to formal capital

50 yf_ratio ratio of output to formal capital;

51

52 parameter

53

54 r0(return) Implicit baseyear relative return to public capital

55

56 growth Steady-state growth rate (sensitivity to return on public capital)

57

58 y Output level in simulated transition

59 kg Public capital in simulated transition

60 kf Formal capital in simulated transition

61 ki Informal capital in simulated transition

62

63 transition Growth rates through the transition;

64

65

66 *===============================================================================
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67 * Benchmarking steps are explained here:

68

69 eta = 1 - 1/sigmaf;

70 psi = 1 - 1/sigmag;

71

72 * For purpose of deriving coefficients, set magnitude of formal

73 * capital to unity:

74

75 k_f = 1;

76 k_i = iratio;

77

78 thetaf = k_f / (k_f + k_i);

79

80 * Given formal capital, we know the public capital stock from the

81 * tax rate and public sector savings rate:

82

83 k_g = s_g * tau0 * k_f;

84

85 * Value share of public capital depends on assumed shadow return

86 * to public sector capital:

87

88 thetag = r_g * k_g / (k_f + (1+tau0)*k_i + r_g * k_g);

89

90 * Calibrate public capital coefficient from the base year quantity,

91 * the value share and the elastiicty:

92

93 a_g = k_g**(-psi) * thetag / (1 - thetag);

94

95 * Calibrate relative size of formal and informal coefficients,

96 * based on relative size of the capital stock and the elasticity:

97

98 a_f = 1;

99 a_i = (1 / (1 + tau0)) * (k_i/k_f)**(1-eta);

100

101 * Now compute the implicit output level and rescale capital stocks to

102 * be consistent with benchmark output equal to unity:

103

104 y0 = ( (a_f * k_f**eta + a_i * k_i**eta)**(psi/eta) + a_g * k_g**psi )**(1/psi);

105

106 k_f = k_f / y0;

107 k_i = k_i / y0;

108 k_g = k_g / y0;

109

110 * Calibrate private savings to be consistent with steady-state:

111

112 s = (g + delta) * (1 + tau0 + iratio) / (1/k_f);

113

114

115 *===============================================================================

116 * 1) Simulate the transitional dynamics associated with a change

117 * in the tax rate.

118

119 * Apply the new tax rate:

120

121 tau = tau_s;

122

123 * Given the tax rate, we know the formal share of private capital use:

124

125 thetaf = 1 / ((a_i * (1 + tau) / a_f)**(1/(1-eta)) + 1);

126

127 * Initialize the state variable:

128

129 k_p = k_f + k_i;

130

131 loop(t,

132

133 * Record current capital stocks:
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134

135 kg(t) = k_g;

136 kf(t) = k_f;

137 ki(t) = k_i;

138

139 * Compute output:

140

141 y(t) = ( (a_f * k_f**eta + a_i * k_i**eta)**(psi/eta)

142 + a_g * k_g**psi )**(1/psi);

143

144 * Update capital stocks for the next period.

145

146 * Note: the price of a unit of new capital is given by a share-weighted

147 * average of the informal price (1) and the formal sector price (1+tau).

148 * This explains the termin the the denominator of the k_p expression:

149

150 k_p = k_p * (1 - delta) + s * y(t) / (1 - thetaf + (1+tau) * thetaf);

151 k_g = k_g * (1 - delta) + s_g * tau * thetaf * s * y(t) / (1 - thetaf

152 + (1+tau) * thetaf);

153 k_f = k_p * thetaf;

154 k_i = k_p * (1 - thetaf);

155 );

156

157 * Compute growth rates:

158

159 transition(t,"g0")$y(t+1) = 100 * g;

160 transition(t,"y")$y(t+1) = 100 * (y(t+1)-y(t)) / y(t);

161 transition(t,"kg")$kg(t+1) = 100 * (kg(t+1)-kg(t)) / kg(t);

162 transition(t,"kf")$kf(t+1) = 100 * (kf(t+1)-kf(t)) / kf(t);

163 transition(t,"ki")$ki(t+1) = 100 * (ki(t+1)-ki(t)) / ki(t);

164

165 display transition;

166

167

168 *===============================================================================

169 * 2) Perform a sensitivity analysis: growth as a function of the

170 * tax rate, accounting for alternative assumptions regarding

171 * the base year shadow price on public capital:

172

173 * Assign base year relative returns to public capital

174 * (base year return to informal capital = 1):

175

176 r0("low") = 0.5;

177 r0("medium") = r_g;

178 r0("high") = 1 + tau0 + 0.5;

179

180 * For each alternative base year return to public capital,

181 * recalibrate the model:

182

183 loop(return,

184

185 r_g = r0(return);

186 eta = 1 - 1/sigmaf;

187 psi = 1 - 1/sigmag;

188 k_f = 1;

189 k_i = iratio;

190 k_g = s_g * tau0 * k_f;

191 a_f = 1;

192 a_i = (1 / (1 + tau0)) * (k_i/k_f)**(1-eta);

193 thetag = r_g * k_g / (k_f + (1+tau0)*k_i + r_g * k_g);

194 a_g = k_g**(-psi) * thetag / (1 - thetag);

195 y0 = ( (a_f * k_f**eta + a_i * k_i**eta)**(psi/eta) + a_g * k_g**psi )

196 **(1/psi);

197 k_f = k_f / y0;

198 k_i = k_i / y0;

199 k_g = k_g / y0;

200 s = (g + delta) * (1 + tau0 + iratio) / (1/k_f);
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201 display s;

202

203 * Then for each model, evaluate how the growth rate

204 * changes with the tax rate:

205

206 loop(taxrate,

207 tau = 0.01 * ord(taxrate);

208 ki_ratio = (a_i * (1 + tau) / a_f)**(1/(1-eta));

209 yf_ratio = ( (a_f + a_i * (ki_ratio)**eta )**(psi/eta)

210 + a_g * (s_g * tau)**psi )**(1/psi);

211 growth(taxrate,return) = 100 * (s * yf_ratio

212 / (1 + tau + ki_ratio) - delta);

213 );

214

215 );

216

217 display growth;

218

219

220 *===============================================================================

221 * Generate some plots:

222

223 $if %batch%==yes $setglobal batch yes

224 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

225 $if %batch%==yes $setglobal gp_opt2 "set title"

226

227 $if %batch%==yes $setglobal gp_opt3 "set output ’bs17a.eps’"

228 $setglobal gp_opt4 "set key outside width 4"

229 $setglobal gp_opt5 "set xlabel ’Tax rate on formal capital (%)’"

230 $setglobal gp_opt6 "set ylabel ’Economic growth rate (%)’"

231 $setglobal gp_opt7 "set grid"

232 $setglobal gp_opt8 "set yrange [-2:4]"

233

234 $setglobal domain taxrate

235 $setglobal labels taxlabel

236 $libinclude plot growth

237

238 $if %batch%==yes $setglobal gp_opt3 "set output ’bs17b.eps’"

239 $setglobal gp_opt5 "set xlabel ’Year’"

240 $setglobal gp_opt6 "set ylabel ’Economic growth rate (%)’"

241 $setglobal gp_opt8 "set yrange [-1:5]"

242

243 $setglobal domain tplot

244 $setglobal labels decade

245 $libinclude plot transition
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Figure 14: Capital Taxes and Steady-State Growth
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Figure 15: Growth Rates through the Transition

-1

0

1

2

3

4

5

2000 2010 2020 2030 2040

E
co

no
m

ic
 g

ro
w

th
 r

at
e 

(%
)

Year

g0
y

kg
kf
ki

36



5 The Neoclassical Optimal Growth Model

This section lays down the basics for developing applied dynamic CGE models. We
begin by going through the logic of the Ramsey model which is often presented as
a dynamic optimization problem7:

max
∞∑

t=0

(
1

1 + ρ

)t
C1−θ

t − 1
1− θ

s.t.
Ct = f(Kt)− It

Kt+1 = (1− δ)Kt + It

K0 = K̄0

The maximand in this problem is often called constant-elasticity-of-intertemporal
substitution (CEIS) utility function. As will be shown below, it simply represents
a monotonic transformation of conventional CES utility function.

Here, as in many macroeconomics textbooks, aggregate output is expressed as
a function of the capital stock alone, i.e.:

Yt = f(Kt)

In the MPSGE representation of the Ramsey model8, it is convenient to work
with a constant-returns production function in which we have inputs of both labour
and capital:

Yt = F (L̄t, Kt)

When labour is in fixed supply, the production function exhibits diminishing
returns to capital. There is therefore no loss of generality by formulating the model
on the basis of a constant returns to scale technology.

In writing down a model it is helpful to employ the unit cost function associated
with the production function F (·):9

c(pL
t , rK

t ) ≡ min pL
t aL + rK

t aK

s.t.
F (aL, aK) = 1

Shephard’s lemma tells us that the compensated demand functions for labour
and capital are the partial derivatives of the unit cost function:

aK(rK , pL) =
∂c(pL

t , rK
t )

∂rK
t

and

aL(rK , pL) =
∂c(pL

t , rK
t )

∂pL
t

The representative agent model can be formulated as a general equilibrium
model which is completely routine, apart from the fact that there are an infinite-
number of variables. Following the conventional GAMS/MPSGE framework, equi-
librium in the model is characterized by three classes of equations:

7For simplicity it is assumed that there is no population growth.
8See the last part in section 3.1 for a simple model represented in three equivalent formulations,

i.e. NLP, algebraic MCP and MPSGE.
9Note that the lower-case function c(·) represents unit cost, while the upper case Ct represents

consumption in year t. In the equilibrium model Ct(p, M) represents the demand for output in
year t as a function of output prices and aggregate present value of income.
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1. Market clearance conditions and associated market prices are as follows:10

- Output market (market price pt):

Yt = Ct(p,M) + It

- Labour market (wage rate pL
t ):

L̄t = aL(rK
t , pL

t ) Yt

- Market for capital services (capital rental rate rK
t ):

Kt = aK(rK
t , pL

t ) Yt

- Capital stock (capital purchase price pK
t ):

Kt+1 = (1− δ)Kt + It

2. Zero profit conditions and associated activities are:11

- Output (Yt):
pt = c(pL

t , rK
t )

- Investment (It ≥ 0):
pt ≥ pK

t+1

- Capital stock (Kt):
pK

t = rK
t + (1− δ)pK

t+1

3. Income balance:

M = pK
0 K̄0 +

∞∑
t=0

pL
t L̄t

Two questions might arise for an MPSGE modeler looking at this equilibrium
model. First, the careful observer might note that the demand functions, Ct(p, M),
have not been specified, and because these arise from CIES preferences so there
may be some details to work out. This problem is considerably easier than the
second issue, namely how do we solve an infinite-dimensional system of nonlinear
equations. Let’s first look at this latter issue. The issue of CEIS preferences will be
considered in the calibration section below.

In order to solve a finite approximation of the model with a T -period model
horizon, we need to decompose the consumer’s problem. Consider the infinite-
horizon problem of the representative agent in Ramsey’s model:

max
∞∑

t=0

(
1

1 + ρ

)t

u(ct)

s.t. ∞∑
t=0

pcct = pK
0 K̄0 +

∞∑
t=0

pL
t L̄t

10The demand functions employed in this model assure that all prices will be nonzero in equilib-
rium. There is no formal need, therefore, to associated prices with market clearance conditions, as
would be required in a conventional complementarity problem. We provide an associated here in
order to help understand how the model might be extended with demand functions which would
admit zero prices.

11The only activity level which could possibly fall to zero would be investment, and that would
only happen in a policy scenario which resulted in a substantial reduction in the return to capital.
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in which u(c) = c1−θ−1
1−θ , and define a value of terminal assets to be:

A∗T =
∞∑

t=T+1

(
pcc

∗
t − pL

t L̄t

)

Then consider the equivalent model:

max
T∑

t=0

(
1

1 + ρ

)t

u(ct) +
∞∑

t=T+t

(
1

1 + ρ

)t

u(ct)

s.t.
T∑

t=0

pcct = pK
0 K̄0 +

T∑
t=0

pL
t L̄t −AT

∞∑

t=T+1

pcct = AT +
∞∑

t=T+1

pL
t L̄t

If AT is fixed then this can be posed as two separate optimization problems, one
running through time period T and another for the post-terminal period. When
terminal assets are assigned a value of A∗T , corresponding to the infinite-horizon
solution, then the finite horizon model will then produce consumption levels for
years 0 through T which are identical to the ∞-horizon model. The question is how
do we find A∗T ?

Terminal assets in the closed economy model are simply equal to the value of
the capital stock at the start of period T + 1. The model running through year
T then produces a good approximation to the consumer problem when we have a
good approximation to the terminal capital stock. The key insight provided by Lau,
Pahlke, and Rutherford (2002) is that the state variable KT+1 can be determined as
part of the equilibrium calculation by targeting the associated control variable, IT .
In the present model this could be based on any of the following primal constraints:

- Terminal investment growth rate set equal to the long-run steady-state growth
rate:

IT /IT−1 = 1 + g

- Terminal investment growth rate set equal to the growth rate of aggregate
output:

IT /IT−1 = YT /YT−1

- Terminal investment growth rate set equal to the growth rate of consumption:

IT /IT−1 = CT /CT−1

State-variable targeting provides a very compact means of determining the ter-
minal capital stock. In models with multiple consumers living beyond period T , it
would be necessary to account for which of these agents owns the assets. Note that
some agents may have negative asset positions at the end of the model – particularly
in overlapping generations models where young households accumulate debt which
is repaid in middle age.

The final detail involved in implementing a dynamic model in MPSGE is cali-
bration. The simplest approach is to set up the model along a steady-state growth
rate in which the interest rate (r̄) and growth rate (ḡ) are given. The first thing to
work out is to determine the structure of the benchmark equilibrium.

Here are the steps involved in sorting out the steady-state conditions which
related investment and capital earnings in a static data set which is consistent with
a steady-state growth path:
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1. The zero-profit condition for It reveals the price level for capital:

pK
t+1 =

pK
t

1 + r̄
= pt

hence
pK

t = (1 + r̄)pt

The base year price of capital is then:

p̄K = 1 + r̄

2. The zero profit condition for Kt determines the price level for rK
t :

pK
t = rK

t + (1− δ)pK
t+1

Substituting the values of pK
t and pK

t+1 reveals that the base year rental price
of capital is sufficient to cover interest plus depreciation:

r̄K = r̄ + δ

3. The main challenge involved in calibrating a dynamic model centers on the
reconciliation of base year capital earnings, investment, the steady-state in-
terest rate and the capital depreciation rate. To see how this works, consider
the market clearance condition for capital in the first period:

K1 = K̄0(1− δ) + Ī = (1 + ḡ)K̄0

This implies that base year investment can be calculated on the basis of growth
and depreciation of the base year capital stock:

Ī = K̄0(ḡ + δ)

Finally, we can use r̄K to determine K̄0 on the basis of the value of capital
earnings in the base year, V K, hence:

Ī = V K
ḡ + δ

r̄ + δ

The problem that arises in applied models is that Ī and V K will not satisfy
this relation for arbitrary values of ḡ, r̄ and δ. Something typically has to be
adjusted to match up the dataset with the baseline growth path.

The second issue to work out is the representation of CEIS preferences in a
MPSGE model. Consider the following equivalent representations of intertemporal
preferences:

1. Additively separable utility:

U(C) =
∞∑

t=0

(
1

1 + ρ

)t
C1−θ

t − 1
1− θ

2. Linearly homogeneous utility:

Û(C) =

[ ∞∑
t=0

(
1

1 + ρ

)t

C1−θ
t

] 1
1−θ
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It is possible to determine the equivalence of U and Û by recalling that a mono-
tonic transformation of utility does not alter the underlying preference ordering.
Observe that:

Û = V (U) = [aU + κ]1/a

where

κ =
∞∑

t=0

(
1

1 + ρ

)t

=
1 + ρ

ρ
,

and
a = 1− θ.

V (·) is a monotonic transformation (V ′ > 0), hence optimization of U and Û yield
identical demand functions.

Alternatively, recall that preference orderings are defined by the marginal rate
of substitution. In both of these models we have:

∂U/∂Ct+1

∂U/∂Ct
=

1
1 + ρ

(
Ct

Ct+1

)θ

There are several advantages associated with the use of linearly homogeneous
representation. First of all, these preferences can be represented in MSPGE. Second,
the reporting of welfare changes as Hicksian-equivalent variations is trivial with Û
: a 1% change in Û corresponds to a 1% equivalent variation in income.

CEIS preferences over a finite horizon can be represented in MPSGE as follows
(lines 110 to 112 in the code given below):

$PROD:U s:sigma

O:PU Q:(c0*sum(t, pref(t)*qref(t)))

I:P(t) Q:(qref(t)*C0) P:pref(t)

Intertemporal preferences in an MPSGE model are typically based on the fol-
lowing parameters:

- c0 is the base year consumption level,

- qref(t) = (1+g0)**(ord(t)-1) is the baseline equilibrium index of economic
activity, calculated on the basis of a steady-state growth rate equal to g0,

- pref(t) = (1/(1+r0))**(ord(t)-1) is the baseline present value price path,
calculated on the basis of a steady-state interest rate equal to r0, and

- sigma is the intertemporal elasticity of substitution.

Figure 5 shows how the utility function is calibrated using these parameters.
Benchmark quantities determine an anchor point for the set of indifference curves.
Benchmark prices fix the slope of the indifference curve at that point, and the
elasticity describes the curvature of the indifference curve.

The MPSGE representation includes a discount rate which is define implicitly
as:

ρ =
1 + r

(1 + g)θ
− 1

Numeric implementation

The code on the following pages presents a GAMS/MPSGE model which has been
formulated following these ideas. Lines 1 to 72 reads base year data describing a
steady-state equilibrium. Investment levels are imputed from the base year capital
stock which is in-turn inferred from the assumed capital value share. Lines 73 to 150
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Figure 16: Calibrated intertemporal preferences

-

6Ct+1

Ct

1 + g

1

pt
pt+1

= 1 + r

declares the GAMS/MPSGE model, assigns steady-state values for activity levels
and price, and then checks consistency of the resulting model. Lines 151 to 157
runs a policy experiment. It assigns a tax on capital earnings beginning in year 6.
The resulting equilibrium is computed assuming that economic agents anticipate
the application of the tax, resulting in a sharp response in investment and other
economic variables to the new economic environment. Over time the tax leads to
a reduction in the steady-state capital stock and the real wage. Finally, lines 158
to the end show how to present output in graphs using GNUPLOT, both to the
windows screen and as encapsulated postscript.

1 $TITLE Ramsey Model - MPSGE formulation

2

3 $ontext

4

5 Calibrate to the steady-state condition:

6

7 I0 = KD0 * (g + delta) / (r + delta)

8

9 where g=2, delta=7, r=5, so

10

11 I0 = 48 * 9 / 12 = 36

12

13 Y I FD

14 P 100 -36 -64

15 PL -52 52

16 RK -48 48

17 PS 36 -36

18

19 $offtext

20

21 SET tt Time horizon (including the first year of the post-terminal period)

22 /2004*2081/,

23 t(tt) Time period over the model horizon

24 /2004*2080/;

25

26 SET t0(t), tl(t), tterm(tt);

27

28 PARAMETER g Growth rate /0.02/

29 r Interest rate /0.05/

30 delta Depreciation rate /0.07/

31 kvs Capital value share /0.48/

32 sigma Elasticity of substitution /1.00/

33

34

35 y0 Base year output
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36 kd0 Base year rental value of capital

37

38 k0 Base year capital stock

39 i0 Base year investment

40 c0 Base year consumption

41 l0 Base year labor input

42

43 kstock Base year capital stock multiplier /1/

44

45 taxk(t) Capital tax rate in period T

46

47 qref(t) Reference quantity path

48 pref(tt) Reference price path;

49

50

51 * Use the GAMS ORD (ordinality) and CARD (cardinality)

52 * functions to automate the identification of the first

53 * and last periods of the model horizon:

54

55 t0(t) = yes$(ord(t) eq 1);

56 tl(t) = yes$(ord(t) eq card(t));

57 tterm(tt) = yes$(ord(tt) eq card(tt));

58

59 * Calibrate the model to the baseline growth path:

60

61 y0 = 100;

62 kd0 = kvs * y0;

63 l0 = y0 - kd0;

64 k0 = kd0 / (r + delta);

65 i0 = (g + delta) * k0;

66 c0 = y0 - i0;

67 taxk(t) = 0;

68 qref(t) = (1+g)**(ord(t)-1);

69 pref(tt) = (1/(1+r))**(ord(tt)-1);

70

71 DISPLAY y0, kd0, l0, k0, i0, c0, g, r, delta;

72

73 $ONTEXT

74

75 $MODEL:RAMSEY

76

77 $SECTORS:

78 U ! Intertemporal utility index

79 Y(t) ! Output

80 I(t) ! Investment

81 K(t) ! Capital stock

82

83 $COMMODITIES:

84 PU ! Intertemporal utility price index

85 P(t) ! Output price

86 RK(t) ! Return to capital

87 PK(tt) ! Capital price

88 PL(t) ! Wage rate

89

90 $CONSUMERS:

91 RA ! Representative agent

92

93 $AUXILIARY:

94 TK ! Post-terminal capital stock

95

96 $PROD:Y(t) s:1

97 O:P(t) Q:Y0

98 I:PL(t) Q:L0

99 I:RK(t) Q:KD0 A:RA T:TaxK(t)

100

101 $PROD:K(tt)$T(tt)

102 O:PK(TT+1) Q:(K0*(1-DELTA))
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103 O:RK(tt) Q:KD0

104 I:PK(tt) Q:K0

105

106 $PROD:I(tt)$T(tt)

107 O:PK(TT+1) Q:I0

108 I:P(tt) Q:I0

109

110 $PROD:U s:sigma

111 O:PU Q:(c0*sum(t, pref(t)*qref(t)))

112 I:P(t) Q:(qref(t)*c0) P:pref(t)

113

114 $DEMAND:RA

115 D:PU

116 E:PL(t) Q:(L0*qref(t))

117 E:PK(T0) Q:(K0*KSTOCK)

118 E:PK(TTERM) Q:-1 R:TK

119

120 $REPORT:

121 V:C(t) I:P(t) PROD:U

122 V:W W:RA

123

124 $CONSTRAINT:TK

125 SUM(T$TL(T+1), I(T+1)/I(t) - Y(T+1)/Y(t)) =E= 0;

126

127 $OFFTEXT

128 $SYSINCLUDE mpsgeset RAMSEY

129

130 * Assign steady-state equilibrium values for quantities and prices:

131

132 Y.L(t) = qref(t);

133 I.L(t) = qref(t);

134 K.L(t) = qref(t);

135

136 P.L(t) = pref(t);

137 RK.L(t) = pref(t);

138 PL.L(t) = pref(t);

139

140 * The steady-state price of capital is the output price

141 * times one plus the interest rate:

142

143 PK.L(tt) = (1+r) * pref(tt);

144 TK.L = k0 * (1+g)**card(t);

145

146 RAMSEY.ITERLIM = 0;

147 $INCLUDE RAMSEY.GEN

148 SOLVE RAMSEY USING MCP;

149 RAMSEY.ITERLIM = 1000;

150

151 * Apply a tax on capital inputs of 25% beginning in year 6:

152

153 TAXK(t)$(ORD(t) > 5) = 0.25;

154

155 $INCLUDE RAMSEY.GEN

156 SOLVE RAMSEY USING MCP;

157

158 * Generate some reports with graphs:

159

160 PARAMETER indices "Consumption, Investment and Capital Stock Indices";

161

162 indices(t,"C") = C.L(t)/(c0*qref(t));

163 indices(t,"I") = I.L(t)/qref(t);

164 indices(t,"K") = K.L(t)/qref(t);

165

166 DISPLAY INDICES;

167

168 * Define the domain over which the X-axis will be defined:

169
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170 $setglobal domain t

171

172 * Define the labels to be printed along the X axis:

173

174 set tlbl(t) Time periods to be labelled in output plots /2010,2030,2050,2070/;

175

176 $setglobal labels tlbl

177

178 * Place the key to the figures outside the graph (see GNUPLOT 3.7 Help File):

179

180 $setglobal gp_opt0 "set key outside"

181

182 * Plot the graph with horizonal and vertical grid lines (see GNUPLOT 3.7 Help File):

183

184 $setglobal gp_opt1 "set grid"

185

186 * Generate the plot to the screen -- it can subsequently be copied to the clipboard

187 * using a right-click of the mouse, and then pasted into a separate program for

188 * publication:

189

190 $if %batch%==yes $setglobal batch yes

191 $if %batch%==yes $setglobal gp_opt1 "set term postscript eps monochrome ’Times-Roman’ 20"

192 $if %batch%==yes $setglobal gp_opt2 "set title"

193

194 $if %batch%==yes $setglobal gp_opt3 "set output ’ramsey1.eps’"

195 $setglobal gp_opt4 "set key outside width 4"

196

197 $libinclude plot indices

198

199 * Repeat the report generation process a couple more times:

200

201 parameter price "Capital prices and wage rate";

202 price(t,"RK") = RK.L(t)/P.L(t);

203 price(t,"PK") = PK.L(t)/((1+r)*P.L(t));

204 price(t,"PL") = PL.L(t)/P.L(t);

205

206 $if %batch%==yes $setglobal gp_opt3 "set output ’ramsey2.eps’"

207 $libinclude plot price

208

209 parameter grates(t,*) Growth rates through the transition;

210

211 grates(t,"c") = 100 * (C.l(t+1)/C.l(t) - 1);

212 grates(t,"i") = 100 * (I.l(t+1)/I.l(t) - 1);

213 grates(t,"k") = 100 * (K.l(t+1)/K.l(t) - 1);

214

215 set gs /c,i,k/;

216 grates(tl,gs) = na;

217

218 $if %batch%==yes $setglobal gp_opt3 "set output ’ramsey3.eps’"

219 $libinclude plot grates

45



Figure 17: Consumption, Investment and Capital Stock Indices
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Figure 18: Capital Prices and Wage Rates
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Figure 19: Growth Rates through the Transition
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